Реферат: Числові послідовності Границя основні властивості границь Нескінченно малі і нескінченно вели
точці є нескінченно малі функції. Знайдемо
Отже, в цьому випадку є нескінченно мала вищого порядку, ніж .
2. , , і - нескінченно малі при . Знайдемо
Отже, при є нескінченно мала вищого порядку, ніж .
Означення 3. Якщо
,
то називається нескінченно малою більш нижчого порядку малості, ніж .
Приклад.
Нехай , . При і - нескінченно малі. Знайдемо
Отже, при є нескінченно малою нижчого
порядку малості, ніж .
Означення 4. Якщо границі відношення і не існує (ні скінчена, ні нескінченна), то і називаються не порівнювальними нескінченно малими.
Означення 5. Якщо
,
то і в точці називаються еквівалентними, і записуються : ~ .
Приклади.
1. Нехай , . Тоді і в точці є нескінченно малі. Оскільки (доведення буде дано в наступній темі), то і є еквівалентні величини, тобто ~ .
2. Довести, що в точці :
а) | б) | ||
в) | г) | ||
д) | е) | ||
ж) | з) |