Реферат: Диференціальні рівняння першого порядку, розвязані відносно похідної

Рис. 2.2

Якщо ж в точці М права частина диференціального рівняння (2.3) має невизначеність, наприклад, типу , тоді звичайна постановка задачі Коші не має смислу, так як через точку М не проходить жодна інтегральна крива. В цьому випадку задача Коші ставиться так : знайти розв’язок (або ), який примикає до точки М.

В деяких випадках треба шукати розв’язок , який задовольняє умовам при при і т.д.

Теорема Пікара.  (без доведення) Припустимо, що функція в диференціальному рівнянні (2.3) визначена і неперервна в обмеженій області

і, отже, вона є обмеженою

(2.12)

функція має обмежену частинну похідну по у на D

. (2.13)

При цих умовах задача Коші (2.3), (2.11) має єдиний неперервно-диференційовний розв’язок в інтервалі

(2.14

Зауваження 2.1.  В сформульованій теоремі умову (2.13) можна послабити (замінити) на те, щоб функція по змінній у задовольняла умові Ліпшіца, тобто

. (2.15)

Тут L >0 - найменша константа яка задовольняє (2.15) і називається константою Ліпшіца .

Теорема Пеано.  (про існування розв’язку). Якщо функція є неперервною на D , то через кожну точку проходить, по крайній мірі, одна інтегральна крива.

Якщо функція диференційовна і задовольняє (2.13), то вона задовольняє умові Ліпшіца, з L = K .

Функція може зодовольняти умові Ліпшіца, але не бути диференційовною і, отже, не буде задовольняти (2.13). Наприклад, .

3. Поняття загального розв’язку, форми його запису.

На прикладах можна переконатися, що диференціальне рівняння (2.3) має нескінченну множину розв’язків, яка залежить від деякого параметру с

(2.16)

Це сімейство і називається загальним розв’язком диференціального рівняння (2.3). При кожному с (2.16) дає інтегральну криву.

Для розв’язування задачі Коші (2.3), (2.11) параметр с можна знайти з рівняння .

Дамо точне визначення загального розв’язку. Припустимо, що на D виконуються умови теореми Пікара.

Означення 2.8.  Функцію

(2.17)

визначену в деякій області змінних х і с, і яка має неперервну частинну похідну по х будемо називати загальним розв’язком диференціального рівняння (2.3) в області D , якщо рівняння (2.17) можна розв¢язати відносно с в області D

(2.18)

і функція (2.17) є розв’язком диференціального рівняння (2.3) при всіх значеннях довільної сталої с , які визначаються формулою (2.18) коли .

Суть означення 2.8 в наступному. Припустимо, що задано сімейство кривих F на області D , яке залежить від одного параметра С . Якщо будь-яка крива із F є інтегральною кривою диференціального рівняння (2.3) і всі криві із F в сукупності покривають D , то F є розв’язком диференціального рівняння (2.3) в області D (рис. 2.3).


Рис. 2.3

Для розв’язування задачі Коші константу С

можна знайти згідно

. (2.18)

Інколи в формулі (2.17) роль С грає у0 , тоді говорять, що розв’язок представлений у формі Коші

. (2.19)

Приклад 2.2. Знайти розв’язок диференціального рівняння

у формі Коші. Загальний розв’язок В указаній області виконуються умови теореми Пікара. Звідки

- розв’язок в формі Коші.

В більшості випадків при інтегруванні диференціального рівняння (2.3) ми отримуємо загальний розв’язок в неявній формі

( або , (2.20)

який називається загальним інтегралом диференціального рівняння (2.3).

К-во Просмотров: 164
Бесплатно скачать Реферат: Диференціальні рівняння першого порядку, розвязані відносно похідної