Реферат: Диференціальні рівняння першого порядку,
А. Д.Р., розв'язані віднлсносно шуканої функції.
Це рівняння має вигляд
(5.22)
За параметри і можна взяти і . Позначимо , тоді
(5.23)
Маємо
Звідки
(5.24)
Нехай – загальний розв'язок Д.Р. (5.24), тоді – загальний розв'язок Д.Р. (5.22).
Д.Р. (5.24) може мати особливий розв'язок , тоді Д.Р. (5.22) може мати особливий розв'язок .
Б. Випадок, коли Д.Р. розв'язане відносно незалежної змінної.
Це рівняння має вигляд
(5.25)
Інтегрується воно аналогічно Д.Р. (5.22). Покладемо . Тоді
Використовуючи співвідношення , отримаємо
(5.26)
Якщо – загальний інтеграл Д.Р. (5.26), то
(5.27)
загальний інтеграл Д.Р. (5.25).
Якщо – особливий рощзв'язок Д.Р.(5.26), то -може бути особливим розв'язком Д.Р. (5.25).
Розглянемо тепер більш прості випадки, коли рівняння можна проінтегрувати.
В. Рівняння Лагранжа.
Це рівняння має вигляд
(5.28)
Воно інтегрується в квадратурах. Покладемо . Тоді
(5.29)
З (5.29) маємо
(5.30)
Д.Р. (5.30) лінійне по
(5.31)
Нехай – розв'язок Д.Р. (5.31). Тоді загальний розв'язок рівняння Лагранжа запишемо в параметричній формі
(5.32)
Особливі розв'язки можуть бути там, де
(5.33)
тобто
(5.34),
де – корені рівняння (5.33).Розв'язок (5.34) може бути частинним або особливим.
Г. Рівняння Клеро.
Це рівняння – частинний випадок рівняння Лагранжа, коли .
(5.35)
Покладемо , тоді
(5.36)
Використовуючи , отримаємо
(5.37)
Рівняння (5.37) розпадається на два
(5.38)