Реферат: Диференціальні рівняння першого порядку,

А. Д.Р., розв'язані віднлсносно шуканої функції.

Це рівняння має вигляд

(5.22)

За параметри і можна взяти і . Позначимо , тоді

(5.23)

Маємо

Звідки

(5.24)

Нехай – загальний розв'язок Д.Р. (5.24), тоді – загальний розв'язок Д.Р. (5.22).

Д.Р. (5.24) може мати особливий розв'язок , тоді Д.Р. (5.22) може мати особливий розв'язок .

Б. Випадок, коли Д.Р. розв'язане відносно незалежної змінної.

Це рівняння має вигляд

(5.25)

Інтегрується воно аналогічно Д.Р. (5.22). Покладемо . Тоді

Використовуючи співвідношення , отримаємо

(5.26)

Якщо – загальний інтеграл Д.Р. (5.26), то

(5.27)

загальний інтеграл Д.Р. (5.25).

Якщо – особливий рощзв'язок Д.Р.(5.26), то -може бути особливим розв'язком Д.Р. (5.25).

Розглянемо тепер більш прості випадки, коли рівняння можна проінтегрувати.

В. Рівняння Лагранжа.

Це рівняння має вигляд

(5.28)

Воно інтегрується в квадратурах. Покладемо . Тоді

(5.29)

З (5.29) маємо

(5.30)

Д.Р. (5.30) лінійне по

(5.31)

Нехай – розв'язок Д.Р. (5.31). Тоді загальний розв'язок рівняння Лагранжа запишемо в параметричній формі

(5.32)

Особливі розв'язки можуть бути там, де

(5.33)

тобто

(5.34),

де – корені рівняння (5.33).Розв'язок (5.34) може бути частинним або особливим.

Г. Рівняння Клеро.

Це рівняння – частинний випадок рівняння Лагранжа, коли .

(5.35)

Покладемо , тоді

(5.36)

Використовуючи , отримаємо

(5.37)

Рівняння (5.37) розпадається на два

(5.38)

К-во Просмотров: 209
Бесплатно скачать Реферат: Диференціальні рівняння першого порядку,