Реферат: Диференціальні рівняння першого порядку,

являється загальним інтегралом Д.Р. (5.49).

Якщо ж розв’язати відносно не можна, а допускається параметризація

(5.52)

тобто

(5.53)

Тоді загальний розв’язок знаходять в параметричній формі

(5.54)

Якщо Д.Р. (5.49) має вигляд

(5.55)

тоді це рівняння легко параметризується .В частинному випадку . Загальний розв’язок запишеться в формі

(5.56)

Приклад 5.6.

Зайти загальний розв’язок рівняння .

Вводимо параметризацію .

, ,

Маємо

Загальний розв’язок в параметричній формі.

в) Д.Р., які не містятьнезалежної змінної.

Це рівняння вигляду

(5.57)

Якщо рівняння (5.57) розв’язане відносно , тобто

(5.58)

то

(5.59)

Являється загальним інтегралом Д.Р. (5.57). Особливими розв’язками можуть бути криві , де – корені рівняння (або ).

Якщо Д.Р. (5.57) не можна розв’язати відносно , але воно допускає параметризацію

(5.60)

то

(5.61)

Загальний розв’язок Д.Р. (5.57) в параметричній формі.

Приклад 5.7.

Розв’язати . Введемо параметризацію .

звідки

зашальний розв’язок нашого рівняння.

г) Узагальнено однорідні рівняння.

Д.Р. назвемо узагальнено однорідним, якщо ліва частина являється однорідною функцією аргументів , яким відповідають величини -го, -го і виміру, тобто

(5.62)

Зробимо заміну

(5.63)

де – нова незалежна змінна, – нова шукана функція. Маємо

тобто . З іншої сторони

(5.64)

Підставимо (5.63),(5.64) в Д.Р. (5.1)

К-во Просмотров: 212
Бесплатно скачать Реферат: Диференціальні рівняння першого порядку,