Реферат: Диференціальні рівняння першого порядку,
Друге - , разом з (5.35) утворює параметричні розв’язкі
(5.40)
Розв’язок (5.40) являється особливим, так як він співпадає з _______. Дійсно
звідки
(5.41)
Дискримінантна крива (3.41) співпадає з розв’язком (3.40).
Приклад 5.3.
Розв’язати рівняння Лагранжа.
Покладемо . Маємо ,
,
Отримали лінійне рівняння
Його розв’язок
(5.42)
(5.43)
загальний розв’язок нашого рівняння в параметричній формі. Або, виключаючи :
(5.44)
Знайдемо ті розв’язки, яким відповідають
Перший розв’язок – офівфісобливий, другий – частинний.
Приклад 5.4.
Це рівняння Клеро. Його загальний розв’язок –
Запишемо дискримінантну криву
Звідки - особливий розв’язок, так як через цей розв’язок проходить ще розв’язок, який міститься в загальному при .
4. Неповні рівняння.
а). Д.Р. які містять тільки похідну.
Це рівняння вигляду
(5.45)
Рівняння (5.45) може мати скінчену або нескінчену кількість дійсних розв’язків.
(5.46)
де – деякі числа, задовільняючі функцію .
Інтегруємо (5.46)
(5.47)
Так як то
(5.48)
загальний інтеграл Д.Р. (5.45). Таким чином при таких припущеннях Д.Р. (5.45) є системою прямих ліній, які можна записати у вигляді (5.48). При цьому в (5.48) можуть входити комплексні розв’язки Д.Р.
Приклад 5.5.
Розв’язати .
Згідно (5.48) – загальний інтеграл. Однак у нього крім дійсного розв’язку , входять розв’язки комплексного Д.Р.
б) Д.Р., які не містять шуканої функції мають вигляд
(5.49)
Якщо (5.49) можна розв’язати відносно похідної
(5.50)