Реферат: Дискретные системы радиоавтоматики
(7)
Применим к левой и правой частям уравнения (7) теорему обращения. С учетом теоремы запаздывания оригинала можно записать
, (8)
где ;
.
Из уравнения (8) можно определить значения оригинала в тактовых точках:
. (9)
Уравнение (9) является разностным уравнением, определяющим связь между входной и выходной величинами в тактовых точках.
Операторный коэффициент передачи дискретной системы
Для составления операторного коэффициента передачи вводится оператор запаздывания – с.
Действие его на временную функцию приводит ее к сдвигу по времени на величину Т:
;
;
…………………………
.
При использовании оператора с разностное уравнение записывается в виде
,
где
.
Чтобы перейти от дискретной ПФ к операторному коэффициенту передачи, необходимо сделать замену:
.
Комплексный коэффициент передачи дискретной системы
Комплексный коэффициент передачи дискретной системы (частотную передаточную функцию) можно получить из передаточной функции дискретной системы путем замены :
.
Комплексный коэффициент передачи дискретной системы определяется как отношение комплексных амплитуд управляемой величины Y(kT) и задающего воздействия в тактовых точках kT. По формированию значений выходного процесса в тактовых точках дискретная система эквивалентна непрерывной с комплексным коэффициентом передачи Hд(jw).
Комплексный коэффициент передачи является периодической функцией переменной с периодом изменения, равным
.
Устойчивость дискретных систем
Устойчивость дискретной системы связана с расположением полюсов ее передаточной функции на комплексной плоскости. Если все полюса расположены в левой полуплоскости, система устойчива. Таким образом, заменив в передаточной функции H(z) z на esT и решив характеристическое уравнение, можно определить устойчивость.