Реферат: Дискретные системы радиоавтоматики

|zi| < 1, i = 1,2… n,

где zi ─ корни характеристического уравнения:

A(z) = an zn + an-1z n-1 + …+ a0 = 0.

Характеристическое уравнение составляется путем приравнивания к нулю знаменателя передаточной функции:

.

Для определения устойчивости дискретных систем используют алгебраические и частотные критерии.

Алгебраический критерий состоит в проверке выполнения системы неравенств, составленных из коэффициентов характеристического уравнения.

При n = 1: .

При n = 2: .

При n=3 указанная система неравенств принимает вид

Частотный критерий (критерий Найквиста): если годограф комплексного коэффициента передачи разомкнутой системы при изменении частоты от 0 до 2π/Т не охватывает точку c координатами (-1; j0), то система устойчива.

Проанализируем устойчивость системы, представленной структурной схемой (рис.1).

Рис.1. Структурная схема дискретной системы.

Передаточная функция от воздействия к ошибке

,

Характеристическое уравнение:

.

Учитывая общую форму записи характеристического уравнения ,

найдем коэффициенты

Условие устойчивости для систем с n = 1:

Таким образом, в дискретной системе накладываются ограничения на период дискретизации Т и на коэффициент усиления Kv.

Непрерывная система с одним интегратором не имеет таких ограничений.

Пусть при t = 0, а на выходе интегратора имеется напряжение U, равное х(0); тогда при t = 0 получим:

– на входе интегратора;

– на выходе интегратора.

К-во Просмотров: 250
Бесплатно скачать Реферат: Дискретные системы радиоавтоматики