Реферат: Дискретные системы радиоавтоматики
,
а через такт, при t = T:
График зависимости х(t) приведен на рис.2.
Рис.2. Графики изменения ошибки в переходном режиме.
Анализ детерминированных процессов в дискретных системах
Задачей анализа является определение динамической ошибки или зависимости выходной величины от входной. Анализ может быть произведен с помощью z-преобразований.
Если имеем z-изображение
и необходимо определить оригинал по z-изображению выходной величины, то можно воспользоваться теоремой обращения:
Для вычисления интеграла обращения используют теорему о вычетах, в соответствии с которой для простого полюса
.
Для полюса порядка m:
.
Для определения установившегося значения величины используют теорему о предельном значении оригинала:
В некоторых случаях можно использовать таблицы, если выражение, определяющее z-изображение, простое, или разложить его на простые слагаемые и затем использовать таблицы.
Для определения реакции системы на детерминированное воздействие можно также использовать разностное уравнение. При высоком порядке разностного уравнения для его решения применяют вычислительные средства.
Анализ случайных процессов дискретных систем
Наиболее часто используемой характеристикой является дисперсия случайного процесса, в частности, дисперсия ошибки слежения. Дисперсия выходного процесса в тактовых точках (t= kT) и стационарном случайном воздействии u(t) на входе с известной корреляционной функцией и спектральной плотностью S(w) определяется выражением
.
Подынтегральное выражение является дробно-рациональной функцией переменной jw. Вычисление интеграла производится по методике, используемой при расчете дисперсии в линейных непрерывных системах.
ЛИТЕРАТУРА
1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш. шк., 2000.
2. Радиоавтоматика: Учеб. пособие для вузов. / Под ред. В.А. Бесекерского. - М.: Высш. шк., 2005.
3. Первачев С.В Радиоавтоматика: Учебник для вузов. - М.: Радио и связь, 2002.
4. Цифровые системы фазовой синхронизации / Под ред. М.И. Жодзишского – М.: Радио, 2000.