Реферат: Дискретные системы радиоавтоматики

(7)

Применим к левой и правой частям уравнения (7) теорему обращения. С учетом теоремы запаздывания оригинала можно записать

, (8)

где ;

.

Из уравнения (8) можно определить значения оригинала в тактовых точках:

. (9)

Уравнение (9) является разностным уравнением, определяющим связь между входной и выходной величинами в тактовых точках.

Операторный коэффициент передачи дискретной системы

Для составления операторного коэффициента передачи вводится оператор запаздывания – с.

Действие его на временную функцию приводит ее к сдвигу по времени на величину Т:

;

;

…………………………

.

При использовании оператора с разностное уравнение записывается в виде

,

где

.

Чтобы перейти от дискретной ПФ к операторному коэффициенту передачи, необходимо сделать замену:

.

Комплексный коэффициент передачи дискретной системы

Комплексный коэффициент передачи дискретной системы (частотную передаточную функцию) можно получить из передаточной функции дискретной системы путем замены :

.

Комплексный коэффициент передачи дискретной системы определяется как отношение комплексных амплитуд управляемой величины Y(kT) и задающего воздействия в тактовых точках kT. По формированию значений выходного процесса в тактовых точках дискретная система эквивалентна непрерывной с комплексным коэффициентом передачи Hд(jw).

Комплексный коэффициент передачи является периодической функцией переменной с периодом изменения, равным

.

Устойчивость дискретных систем

Устойчивость дискретной системы связана с расположением полюсов ее передаточной функции на комплексной плоскости. Если все полюса расположены в левой полуплоскости, система устойчива. Таким образом, заменив в передаточной функции H(z) z на esT и решив характеристическое уравнение, можно определить устойчивость.

К-во Просмотров: 248
Бесплатно скачать Реферат: Дискретные системы радиоавтоматики