Реферат: Дискретные цепи

Пример. Определить передаточную функцию на рис.(2.4,б).

Решение.

,

где - передаточная функция рекурсивной части схемы,

- передаточная функция нерекурсивной части цепи.

По известной передаточной функции можно легко определить разностное уравнение цепи.

Пример. Составить разностное уравнение цепи на рис.(2.2,в).

Решение.

Здесь .

Поэтому .

Отсюда .

Следовательно переходя к оригиналам: y(nT)= 0,4 x(nT-T) - 0,08 y(nT-T).

Общие свойства передаточной функции.

Критерий устойчивости дискретной цепи совпадает с критерием устойчивости аналоговой цепи: полюсы передаточной функции должны располагаться в левой полуплоскости комплексного переменного , что оответствует положению полюсов в пределах единичного круга плоскости

z = x + jy.

Передаточная функция цепи общего вида записывается, согласно (2.3), следующим образом:

, (2.6)

где знаки слагаемых учитываются в коэффицентах ai , bj , при этом b0 =1.

Свойства передаточной функции цепи общего вида удобно сформулировать в виде требований физической реализуемости рациональной функции от Z: любая рациональная функция от Z может быть реализована в виде передаточной функции устойчивой дискретной цепи с точностью до множителя H0 ЧHQ , если эта функция удовлетворяет требованиям:

коэффициенты ai , bj - вещественные числа,

корни уравнения V(Z)=0, т.е. полюсы H(Z), расположены в пределах единичного круга плоскости Z.

Множитель H0 ЧZQ учитывает постоянное усиление сигнала H0 и постоянный сдвиг сигнала по оси времени на величину QT.

Частотные характеристики.

Комплекс передаточной функции дискретной цепи

определяет частотные характиристики цепи

- АЧХ, - ФЧХ.

На основании (2.6) комплекс передаточной функции общего вида запишется так

.

Отсюда формулы АЧХ и ФЧХ

, (2.7)

К-во Просмотров: 649
Бесплатно скачать Реферат: Дискретные цепи