Реферат: Дискретные цепи
Согласно (2.22)
.
Отсюда .
В заключении рассмотрим важный часный случай применения формулы (2.23).
Для случайных сигналов с нулевым средним
, (2.24)
где - дисперсия случайного сигнала x(nT).
Отсюда, учитывая (2.23),
.
Следовательно
, (2.25)
Формула (2.25) применяется, в частности, для расчёта шумов квантования в цифровых цепях .
Секционирование.
Реальные сигналы могут иметь значительную протяжённость во времени, поэтому обработка таких сигналов на ЭВМ осуществляется посекционно. Расчёты по каждой секции выполняются по формуле круговой свёртки
,
где h(nT) - импульсная характеристика, определяющая способ обработки сигнала .
Каждая секция совмещается с предидущей секцией с учётом сдвига между секциями входного сигнала .
Применяются два основных метода секционирования: метод перекрытия с суммированием и метод перекрытия с накоплением.
1. Метод перекрытия с суммированием.
Сигнал x(nT) разбивается на секции длиной L. Отсюда- длина секции , - длина секции , - длина .
Длина секции больше длины секции на . Поэтому смежные секции выходного сигнала перекрываются на интервале длиной . На интервале перекрытия необходимо выполнить арифметические операции по суммированию отсчётов.
2. Метод перекрытия с накоплением.
Сигнал x(nT) разбивается на секции длиной L. Затем каждая секция наращивается слева участком предидущей секции длиной . Поэтому
- длина , - длина , - длина .
Искусственное удлинение каждой секции приводит к тому, что первые и последние отсчётов секции являются ложными и поэтому отбрасываются. Оставшиеся L отсчётов каждой секции, являются истинными, поэтому смежные секции совмещаются без перекрытия и без зазора.
Пример. Осуществить посекционную обработку сигнала
x(nT) = { 1,0; 0,5 }, если h(nT)= { 1,0; 0,5 }.
Решение.
Применим метод перекрытия с накоплением.