Реферат: Дискретные цепи
Wx =x2 (nT), (2.15)
соответственно в частотной области, согласно равенству Парсеваля,
Wx =X2 (w)dw =X(jw)X* (jw)d(jw), (2.16)
где X(jw) = X(w)ej j ( w ) - спектр сигнала x(nT),
X* (jw) = X(w)e-j j ( w ) - спектр x(-nT) в соответствии с теоремой о спектре инверсного сигнала,
X2 (w) = X(jw)ЧX* (jw) = Sx (jw) - энергетический спектр сигнала x(nT).
На рис.(2.8) показан в качестве примера сигнал x(nT) и его инверсная копия x(-nT) для некоторого частного случая
Энергетический спектр выражает среднюю мощность сигнала x(nT), приходящуюся на узкую полосу частот в окрестности переменной w.
Во временной области энергетическому спектру соответствует свертка инверных сигналов, что определяет корреляционную функцию Sx (nT) сигнала x(nT).
. (2.17)
Согласно (2.17) и (2.15) корреляционная функция в точке n = 0 равна энергии сигнала, т. е.
(2.18)
Для периодических дискретных сигналов корреляционная функция и энергетический спектр связаны формулами ДПФ
. (2.19)
Отсюда получаются расчётные формулы энергии периодических дискретных последовательностей
, (2.20)
что соответствует равенству Парсеваля для дискретных периодических сигналов. Корреляционная функция таких сигналов определяется по формуле круговой свёртки
.
Расчет энергии дискретного сигнала можно выполнить при необходимости, применяя равенство Парсеваля относительно Z - изображений сигнала и его инверсной копии (теорема энергий)
, (2.21)
где - Z - изображение корреляционной функции.
Уместно заметить, что применительно к случайным сигналам корреляционная функция чаще определяется формулой с весовым множителем , т.е.
,
соответственно для энергетического спектра
,
что приводит к результату, при котором среднее значение случайной величины с ростом N сходится к постоянной величине.
Свертка сигнала с инверсной копией другого сигнала называется взаимной корреляцией этих сигналов.
Расчёт энергии сигнала в дискретной цепи.
В любой точке дискретной цепи энергию сигнала можно вычислить по известному сигналу или по корреляционной функции сигнала в этой точке. Корреляционную функцию сигнала в некоторой точке цепи можно определить не только по известному сигналу, но и по известной корреляционной функции входного сигнала и импульсной реакции