Реферат: Дисперсийный анализ

Гипотеза H0 отвергается, если фактически вычисленное зна­чение статистики F =S/Sбольше критического Fα :K1 :K2 , опреде­ленного на уровне значимости α при числе степеней свободы k1 =m-1 и k2 =mn-m, и принимается, если F < Fα:K1 :K2 .

F- распределение Фишера (для x > 0) имеет следующую функцию плотности (для = 1, 2, ...; = 1, 2, ...):

где - степени свободы;

Г - гамма-функция.

Применительно к данной задаче опровержение гипотезы H0 означает наличие существенных различий в качестве изделий различных партий на рассматриваемом уровне значимости.

Для вычисления сумм квадратов Q1 , Q2 , Qчасто бывает удобно использовать следующие формулы:

(12)

(13)

(14)

т.е. сами средние, вообще говоря, находить не обязательно.

Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных [1].

1.3 Многофакторный дисперсионный анализ

Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным дисперсионным анализом нет. Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного дисперсионного ана­лиза (в варианте ее компьютерного использования) несом­ненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие [3].

Общая схема двухфакторного эксперимента, данные ко­торого обрабатываются дисперсионным анализом имеет вид:


Рисунок 1.1 – Схема двухфакторного эксперимента

Данные, подвергаемые многофакторному дисперсионному анализу, часто обозначают в соответствии с количеством факторов и их уровней.

Предположив, что в рассматриваемой задаче о каче­стве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные раз­личия в качестве изделий по каждому фактору:

А - партия из­делий;

B - станок.

В результате получается переход к задаче двухфакторного дисперсионного анализа.

Все данные представлены в таблице 1.2, в кото­рой по строкам - уровни Ai фактора А, по столбцам — уровни Bj фактора В, а в соответствующих ячейках, табли­цы находятся значения показателя качества изделий xijk (i=1,2,...,m; j=1,2,...,l; k=1,2,...,n).

Таблица 1.2 – Показатели качества изделий

B1 B2 Bj Bl
A1 x11l ,…,x11k x12l ,…,x12k x1jl ,…,x1jk x1ll ,…,x1lk
A2 x2 1l ,…,x2 1k x22l ,…,x22k x2jl ,…,x2jk x2ll ,…,x2lk
Ai xi1l ,…,xi1k xi2l ,…,xi2k xijl ,…,xijk xjll ,…,xjlk
Am xm1l ,…,xm1k xm2l ,…,xm2k xmjl ,…,xmjk xmll ,…,xmlk

Двухфакторная дисперсионная модель имеет вид:

xijk =μ+Fi +Gj +Iijijk , (15)

где xijk - значение наблюдения в ячейке ij с номером k;

μ - общая средняя;

Fi - эффект, обусловленный влиянием i-го уровня фактора А;

Gj - эффект, обусловленный влиянием j-го уровня фактора В;

Iij - эффект, обусловленный взаимодействием двух факто­ров, т.е. отклонение от средней по наблюдениям в ячейке ij от суммы первых трех слагаемых в модели (15);

εijk - возмущение, обусловленное вариацией переменной внутри отдельной ячейки.

К-во Просмотров: 415
Бесплатно скачать Реферат: Дисперсийный анализ