Реферат: Движение в центрально-симметричном поле

(3,6)

Решение этого уравнения должно расходиться на бесконечности быстрее конечной степени , а при =0 должно быть конечным. Удовлетворяющее последнему условию решение есть вырожденная гипергеометрическая функция

(3,7)

Решение, удовлетворяющее условию на бесконечности, получится лишь при целых отрицательных ( или равных нулю ) значениях , когда функция (3,7) сводится к полиному степени . В противном случае она расходится на бесконечности, как .

Таким образом, мы приходим к выводу, что число должно быть целым положительным, причем при данном должно быть

(3,8)

Вспоминая определение (3,3) параметра , находим

(3,9)

Этим решается задача об определении уровнем энергии дискретного спектра в кулоновском поле. Мы видим, что имеется бесконечное множество уровней между нормальным уровнем и нулем. Интервалы между каждыми двумя последовательными уровнями уменьшаются с увеличением ; уровни сгущаются по мере приближения к значению , при котором дискретный спектр смыкается с непрерывным. В обычных единицах формула (3,9) имеет следующий вид:

(3,10)

Целое число называется главным квантовым числом. Радиальное же квантовое число, определенное в п.1, равно

.

При заданном значении главного квантового числа число может принимать значения

(3,11)

всего различных значений. В выражение (3,9) для энергии входит только число . Поэтому все состояния с различными , но одинаковыми обладают одинаковой энергией. Таким образом, каждое собственное значение оказывается вырожденным не только по магнитному квантовому числу ( как при всяком движении в центрально-симметричном поле ), но и по числу . Это последнее вырождение ( о нем говорят, как о случайном или кулоновом ) специфично именно для кулонового поля. Каждому данному значению соответствует различных значений ; поэтому кратность вырождения - го уровня энергии равна

(3,12)

Волновые функции стационарных состояний определяются формулами (3,5), (3,7). Вырожденная гипергеометрическая функция с целыми значениями обоих параметров совпадает, с точностью до множителя, с так называемыми обобщенными полиномами Лагерра. Поэтому

.

Радиальные функции должны быть нормированы условием

.

Их окончательный вид следующий:

(3,13)

Вблизи начала координат имеет вид

(3,14)

На больших расстояниях

. (3,15)

Волновая функция нормального состояния затухает экспоненциально на расстояниях порядка , т.е. в обычных единицах, .

Средние значения различных степеней вычисляются по формуле

К-во Просмотров: 756
Бесплатно скачать Реферат: Движение в центрально-симметричном поле