Реферат: Двоично-ортогональные системы базисных функций
0 rad(0, Q)
-1
1
0 rad(1, Q)
-1
1
0 rad(2, Q)
-1
1 rad(3, Q)
0
-1
Q
0 0.51
Рис. 1. Функции Радемахера
Дискретные функции Радемахера определяются дискретными значениями Q в точках отсчета. Например: Rad(2,Q) = 1, 1, -1, -1, 1, 1, -1, -1.
Функции Радемахера ортогональные, ортонормированные (3) но являются нечетными, а значит, не образуют полную систему функций, т. к. существуют и другие функции ортогональные функциям Радемахера (например: rad(m,Q) = sign[cos(2m p Q)]) поэтому их применение ограничено.
(3)
Полными двоично-ортогональными системами базисных функций являются системы функций Уолша и Хаара.
2. Функции Уолша
Функции Уолша представляют собой полную систему ортогональных, ортонормированных функций. Обозначение: wal(n, Q) , где n - номер функции, при этом: n = 0, 1,... N-1; N = 2i ; i = 1, 2,… .
Первые 8 функций Уолша приведены на рис. 2.
1
0 wal(0, Q)
-1
1
0 wal(1, Q)
-1
1
0 wal(2, Q)
-1