Реферат: Двойственный симплекс-метод и доказательство теоремы двойственности
Многие задачи линейного программирования первоначально ставятся в виде исходных или двойственных задач, поэтому имеет смысл говорить о паре двойственных задач линейного программирования.
2. Несимметричные двойственные задачи. Теорема двойственности.
В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной — в виде неравенств, причем в последней переменные могутбыть и отрицательными.Для простоты доказательств постановку задачи условимсязаписывать в матричной форме.
Исходная задача. Найти матрицу-столбец X = (x1 , x2 , …, xn ), которая удовлетворяет ограничениям
(1.1) AX = A0 , Х ³0
и минимизирует линейную функцию Z = СХ .
Двойственная задача. Найти матрицу-строку Y = (y1 , y2 , …, ym ), которая удовлетворяет ограничениям
(1.2) YA £ С
и максимизирует линейную функцию f = YA0
В обеих задачах C = (c1 , c2 , …, cn ) - матрица-строка, A0 = (b1 , b2 , …, bm ) — матрица-столбец, А = (aij ) — матрица коэффициентов системы ограничений. Связь между оптимальными планами пары двойственных задач устанавливает следующая теорема.
Теорема (теорема двойственности). Если из пары двойственных задач одна обладает оптимальным планом, то и другая имеет решение, причем для экстремальных значений линейных функций выполняется соотношение
min Z = max f.
Если линейная функция одной из задач не ограничена, то другая не имеет решения.
Д о к а з а т е л ь с т в о. Предположим, что исходная задача обладает оптимальным планом, который получен симплексным методом. Не нарушая общности, можно считать, что окончательный базис состоит из т первых векторов A 1 , A 2 , ..., A m . Тогда последняя симплексная таблица имеет вид табл. 1.1.
Т а б л и ц а 1.1
i | Базис | С базиса | A0 | C1 | C2 | … | Cm | Cm+1 | … | cn |
A1 | A2 | … | Am | Am+1 | … | An | ||||
1 2 . . . m | A1 A2 . . . Am | C1 C2 . . . Cm | x1 x2 . . . xm | 1 0 . . . 0 | 0 1 . . . 0 | ... ... . . . . | 0 0 . . . 1 | x1, m+1 x2, m+1 . . . xm, m+1 | … … . . . … | x1n x2n . . . xmn |
m+1 | Zi - Cj | Z0 | Z1 – C1 | Z2 – C2 | ... | Zm – Cm | Zm+1 – Cm+1 | … | Zn – Cn |
Пусть D — матрица, составленная из компонент векторов окончательного базиса A 1 , A 2 , ..., A m ; тогда табл. 1.1 состоит из коэффициентов разложения векторов A 1 , A 2 , ..., A n исходной системы по векторам базиса, т. е. каждому вектору A j в этой таблице соответствует такой вектор X j что
(1.3) Aj = DXj (j= 1,2, ,.., n).
Для оптимального плана получаем
(1.4) A 0 =DX* ,
где X* = ( x * 1 , x * 2 , …, x * m ) .
Обозначим через матрицу, составленную из коэффициентов разложения векторов А j (j = 1, 2, ..., n), записанных в табл. 1.1. Тогда, учитывая соотношения (1.3) и (1.4), получаем:
(1.5) A =D , D-1 A = ,
(1.6) A 0 =DX*; D -1 A 0 = X* ,
(1.7) min Z = C*X* ,
(1.8) = C* —C £ 0,
где С * = (C* 1 , C* 2 , …, C* m ),С = (C1 , C2 , …, Cm , Cm+1 , …, Cn ), a = (C*X 1 – C1 ; С*Х 2 - С2 , ..., C*X n – Cn ) = (Z1 –С1 ; Z2 - C2 ; ..., Zn — Cn ) — вектор, компоненты которого неположительны, так как они совпадают с Zj — Cj £ 0, соответствующими оптимальному плану.
Оптимальный план исходной задачи имеет вид X* =D-1 А 0 , поэтому оптимальный план двойственной задачи ищем в виде
(1.9) Y* = C*D -1 .
Покажем, что Y* действительно план двойственной задачи. Для этого ограничения (1.2) запишем в виде неравенства YA — С £ 0 , в левую часть которого подставим Y* . Тогда на основании (1.9), (1.5) и (1.8) получим
Y * А – С = С* D -1 А – С = С* - С £ 0,