Реферат: Двойственный симплекс-метод и доказательство теоремы двойственности

Очевидно, для того чтобы записать двойственную задачу, сначала необходимо систему ограничений исходной задачи привести к виду (1.12). Для этого второе неравенство следует умножить на -1.

Двойственная задача. Найти максимум линейной функции f = 2y1 + 3y2 + 6y3 + 3y4 при ограничениях

2y1 - y2 + y3 + 2y4 £ 1,

2y1 + y2 + y3 + y4 ³ 2,

-y1 + 4y2 - 2y3 - 2y4 ³ 3,

Для решения исходной задачи необходимо ввести четыре дополни­тельные переменные и после преобразования системы - одну искус­ственную. Таким образом, исходная симплексная таблица будет состо­ять из шести строк и девяти столбцов, элементы которых подлежат преобразованию.

Для решения двойственной задачи необходимо ввести три допол­нительные переменные. Система ограничений не требует предваритель­ных преобразований, ее первая симплексная таблица содержит четыре строки и восемь столбцов.

Двойственную задачу решаем симплексным методом (табл. 1.3).

Оптимальный план двойственной задачи Y* = (0; 1/2; 3/2; 0), f max =21/2.

Оптимальный план исходной задачи находим, используя оценки ( m + 1)-й строки последней итерации, стоящие в столбцах A5 , A6 , A7 : x1 = 3/2 + 0 = 3/2; x2 = 9/2 + 0 = 9/2; x3 = 0+ 0 = 0. При оптимальном плане исходной задачи X* = (3/2; 9/2; 0) линейная функ­ция достигает наименьшего значения: Zmin =21/2.

Т а б л и ц а 1.3

i Базис С базиса A0 2 3 6 3 0 0 0
A1 A2 A3 A4 A5 A6 A7

1

2

3

A5

A3

A7

0

0

0

1

2

3

2

2

-1

-1

1

4

1

1

-2

2

-1

-2

1

0

0

0

1

0

0

0

1

m + 1 Zi - Cj 0 -2 -3 -6 -3 0 0 0

1

2

3

A3

A6

A7

6

0

0

1

1

5

2

0

3

-1

2

6

1

0

0

2

-1

2

1

-1

2

0

1

0

0

0

1

m + 1 Zi - Cj 6 10 -9 0 9 6 0 0

1

2

3

A3

A2

A7

6

3

0

3/2

½

2

2

0

3

0

1

0

1

0

0

3/2

-1/2

4

½

-1/2

5

½

½

3

0

0

1

m + 1 Zi - Cj 21/2 10 0 0 9/2 3/2 9/2 0

4. Виды математических моделей двойственных задач

На основании рассмотренных несимметричных и симметричных двойственных задач можно заключить, что математические модели пары двойственных задач могут иметь один из следующих видов.

Несимметричные задачи

(1) Исходная задача Двойственная задача

Zmin = CX; f max = YA0 ;

AX = A0 ; YA £ С .

X ³ 0.

(2) Исходная задача Двойственная задача

Zmax = CX; f min = YA0 ;

AX = A0 ; YA ³ С .

X ³ 0.

Симметричные задачи

(3) Исходная задача Двойственная задача

Zmin = CX; f max = YA0 ;

AX ³A0 ; YA £ С .

X ³ 0. Y ³ 0.

(4) Исходная задача Двойственная задача

Zmax = CX; f min = YA0 ;

AX £A0 ; YA ³ С .

X ³ 0. Y ³ 0.

Таким образом, прежде чем записать двойственную задачу для данной исходной, систему ограничений исходной задачи необходимо привести к соответствующему виду. Запишем, например, математиче­скую модель двойственной задачи для следующей исходной.

К-во Просмотров: 360
Бесплатно скачать Реферат: Двойственный симплекс-метод и доказательство теоремы двойственности