Реферат: Двойственный симплекс-метод и доказательство теоремы двойственности

y3 £ 0.

Решение исходной задачи находим симплексным методом (табл. 1.2).

i Базис С базиса A0 0 1 0 -1 -3 0
A1 A2 A3 A4 A5 A6

1

2

3

A1

A3

A6

0

0

0

1

2

5

1

0

0

2

-4

3

0

1

0

-1

2

0

1

-1

1

0

0

1

m + 1 Zi - Cj 0 0 -1 0 1 3 0

1

2

3

A5

A3

A6

-3

0

0

1

3

4

1

1

-1

2

-2

1

0

1

0

-1

1

1

1

0

0

0

0

1

m + 1 Zi - Cj -3 -3 -7 0 4 0 0

1

2

3

A5

A4

A6

-3

-1

0

4

3

1

2

1

-2

0

-2

3

1

1

-1

0

1

0

1

0

0

0

0

1

m + 1 Zi - Cj -15 -7 1 -4 0 0 0

1

2

3

A5

A4

A2

-3

-1

1

4

11/3

1/3

3

-1/3

-2/3

0

0

1

1

1/3

-1/3

0

1

0

1

0

0

0

2/3

1/3

m + 1 Zi - Cj -46/3 -19/3 0 -11/3 0 0 -1/3

Оптимальный план исходной задачи X* =(0; 1/3; 0; 11/3; 4; 0), при котором Zmin = - 46/3, получен в четвертой итерации табл. 1.2. Используя эту итерацию, найдем оптимальный план двойственнойзадачи. Согласно теореме двойственности оптимальный план двойствен­ной задачи находится из соотношения Y* = C*D -1 , где матрица D -1 - матрица, обратная матрице, составленной из компонент векторов, вхо­дящих в последний базис, при котором получен оптимальный план исходной задачи. В последний базис входят векторы A5 , A4 , A2 ; значит,

1 -1 2

D = ( A5 , A4 , A2 ) = -1 2 -4

1 0 3

Обратная матрица D -1 образована из коэффициентов, стоящих в столбцах A1 , A3 , A6 четвертой итерации:

2 1 0

D-1 = -1/3 1/3 2/3

-2/3 -1/3 1/3

Из этой же итерации следует С* = (— 3; —1; 1). Таким образом

2 1 0

Y = С* D-1 = (-3; -1; 1) · -1/3 1/3 2/3

-2/3 -1/3 1/3

Y*=(-19/3; -11/3; -1/3),

т. е. y i = С*Х i , где Х i — коэффициенты разложения последней ите­рации, стоящие в столбцах векторов первоначального единичного базиса.

Итак, i-ю двойственную переменную можно получить из значения оценки (m + 1)-й строки, стоящей против соответствующего вектора, входившего в первоначальный единичный базиc, если к ней приба­вить соответствующее значение коэффициента линейной функции:

у 1 = 19/3 + 0 = — 19/3; y2 = -11/3 + 0 = -11/3; у 3 = -1/3+0 = -1/3. При этом плане max f = -46/3.

3. Симметричные двойственные задачи

Разновидностью двойственных задач линейного , программирования являются двойственные симметричные задачи, в ко­торых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойст­венные переменные налагается условие неотрицательности.

Исходная задача. Найти матрицу-столбец Х = (x1 , x2 , …, xn ), которая удовлетворяет системе ограничений

(1.12). АХ0 , Х >0

и минимизирует линейнуюфункцию Z = СХ.

Двойственная задача. Найти матрицу-строку Y = (y1 , y2 , …, yn ), которая удовлетворяет системе ограничений YA £C , Y ³0 и максимизирует линейную функцию f = YA 0 .

Систему неравенств с помощью дополнительных переменных мож­но преобразовать в систему уравнений, поэтому всякую пару симмет­ричных двойственных задач можно преобразовать в пару несимметрич­ных, для которых теорема двойственности уже доказана.

Используя симметричность, можно выбрать задачу, более удоб­ную для решения. Объем задачи, решаемой с помощью ЭВМ, ограни­чен числом включаемых строк, поэтому задача, довольно громоздкая в исходной постановке, может быть упрощена в двойственной формули­ровке. При вычислениях без помощи машин использование двойствен­ности упрощает вычисления.

Исходная задача. Найти минимальное значение линейной функции Z = x1 + 2x2 + 3x3 при ограничениях

2x1 + 2x2 - x3 ³ 2,

x1 - x2 - 4x3 £ -3, xi ³ 0 (i=1,2,3)

x1 + x2 - 2x3 ³ 6,

К-во Просмотров: 331
Бесплатно скачать Реферат: Двойственный симплекс-метод и доказательство теоремы двойственности