Реферат: Эконометрика 10

Оценить адекватность модели позволяет анализ случайной компоненты ei . Модель считается адекватной исследуемому процессу, если:

1) математическое ожидание значений остаточного ряда близко или равно нулю;

2) значения остаточного ряда случайны;

3) независимы;

4) подчинены нормальному закону распределения.

Таким образом, анализ адекватности модели разбивается на несколько этапов.

1. Равенство нулю математического ожидания ряда остатков означает выполнение следующего соотношения:

Однако в случае применения метода наименьших квадратов такая проверка является излишней, поскольку использование МНК предполагает выполнение равенства , откуда безусловным образом следует равенство нулю математического ожидания значений остаточного ряда.

2. Проверка случайности последовательности ei проводится с помощью критерия пиков (поворотных точек) . Каждое значение ряда (ei ) сравнивается с двумя, рядом стоящими. Точка считается поворотной, если она либо больше и предыдущего и последующего значения, либо меньше и предыдущего и последующего значения.

В случайном ряду должно выполняться строгое неравенство:

,

(6.14)

где p - число поворотных точек;

[ ] - целая часть результата вычислений.

3. При проверке независимости значений ei определяется отсутствие в остаточном ряду автокорреляции , под которой понимается корреляция между элементами одного и того же числового ряда. В нашем случае автокорреляция - это корреляция ряда e1 , e2 , e3 ... с рядом eL+1 , eL+2 , eL+3 ... Число L характеризует запаздывание (лаг). Корреляция между соседними членами ряда (т.е. когда L = 1) называется автокорреляцией первого порядка. Далее для остаточного ряда будем рассматривать зависимость между соседними элементами ei .

Значительная автокорреляция говорит о том, что спецификация регрессии выполнена неправильно (неправильно определен тип зависимости).

Наличие автокорреляции может быть выявлено при помощи d-критерия Дарбина-Уотсона . Значение критерия вычисляется по формуле:

.

(6.15)

Эта величина сравнивается с двумя табличными уровнями: нижним - d1 и верхним - d2 . Соответствующая статистическая таблица приведена в приложении A. Если полученное значение d больше двух, то перед сопоставлением его нужно преобразовать:

d' = 4 - d.

Если d (или d' ) находится в интервале от нуля до d1 , то значения остаточного ряда сильно автокоррелированы.

Если значение d-критерия попадает в интервал от d2 до 2, то автокорреляция отсутствует.

Если d1 < d< d2 - однозначного вывода об отсутствии или наличии автокорреляции сделать нельзя и необходимо использовать другой критерий, например, коэффициент автокорреляции первого порядка:

.

(6.16)

Если |r(1)| окажется меньше табличного (при n<15 rтабл = 0,36), то гипотеза о наличии автокорреляции отвергается.

4. Соответствие остаточного ряда нормальному распределению проще всего проверить при помощи RS-критерия :

,

(6.17)

где emax - максимальное значение ряда остатков;

emin - минимальное значение ряда остатков;

- среднеквадратическое отклонение значений остаточного ряда.

Если рассчитанное значение попадает между табулированными границами с заданным уровнем вероятности, то гипотеза о нормальном распределении принимается. Соответствующая статистическая таблица приведена в приложении Б.

К-во Просмотров: 459
Бесплатно скачать Реферат: Эконометрика 10