Реферат: Эконометрика 10
Оценить адекватность модели позволяет анализ случайной компоненты ei . Модель считается адекватной исследуемому процессу, если:
1) математическое ожидание значений остаточного ряда близко или равно нулю;
2) значения остаточного ряда случайны;
3) независимы;
4) подчинены нормальному закону распределения.
Таким образом, анализ адекватности модели разбивается на несколько этапов.
1. Равенство нулю математического ожидания ряда остатков означает выполнение следующего соотношения:
|
Однако в случае применения метода наименьших квадратов такая проверка является излишней, поскольку использование МНК предполагает выполнение равенства , откуда безусловным образом следует равенство нулю математического ожидания значений остаточного ряда.
2. Проверка случайности последовательности ei проводится с помощью критерия пиков (поворотных точек) . Каждое значение ряда (ei ) сравнивается с двумя, рядом стоящими. Точка считается поворотной, если она либо больше и предыдущего и последующего значения, либо меньше и предыдущего и последующего значения.
В случайном ряду должно выполняться строгое неравенство:
|
(6.14) |
где p - число поворотных точек;
[ ] - целая часть результата вычислений.
3. При проверке независимости значений ei определяется отсутствие в остаточном ряду автокорреляции , под которой понимается корреляция между элементами одного и того же числового ряда. В нашем случае автокорреляция - это корреляция ряда e1 , e2 , e3 ... с рядом eL+1 , eL+2 , eL+3 ... Число L характеризует запаздывание (лаг). Корреляция между соседними членами ряда (т.е. когда L = 1) называется автокорреляцией первого порядка. Далее для остаточного ряда будем рассматривать зависимость между соседними элементами ei .
Значительная автокорреляция говорит о том, что спецификация регрессии выполнена неправильно (неправильно определен тип зависимости).
Наличие автокорреляции может быть выявлено при помощи d-критерия Дарбина-Уотсона . Значение критерия вычисляется по формуле:
|
(6.15) |
Эта величина сравнивается с двумя табличными уровнями: нижним - d1 и верхним - d2 . Соответствующая статистическая таблица приведена в приложении A. Если полученное значение d больше двух, то перед сопоставлением его нужно преобразовать:
d' = 4 - d. |
Если d (или d' ) находится в интервале от нуля до d1 , то значения остаточного ряда сильно автокоррелированы.
Если значение d-критерия попадает в интервал от d2 до 2, то автокорреляция отсутствует.
Если d1 < d< d2 - однозначного вывода об отсутствии или наличии автокорреляции сделать нельзя и необходимо использовать другой критерий, например, коэффициент автокорреляции первого порядка:
|
(6.16) |
Если |r(1)| окажется меньше табличного (при n<15 rтабл = 0,36), то гипотеза о наличии автокорреляции отвергается.
4. Соответствие остаточного ряда нормальному распределению проще всего проверить при помощи RS-критерия :
|
(6.17) |
где emax - максимальное значение ряда остатков;
emin - минимальное значение ряда остатков;
- среднеквадратическое отклонение значений остаточного ряда.
Если рассчитанное значение попадает между табулированными границами с заданным уровнем вероятности, то гипотеза о нормальном распределении принимается. Соответствующая статистическая таблица приведена в приложении Б.