Реферат: Элементарные частицы и космология
Что из этого следует? Ничего особенного из этого не следует. Выражение (36) отражает лишь то, что минимальное воздействие, которое можно оказать на систему, может быть проведено лишь с одним её элементом как целым. А любое воздействие приводит к увеличению времени системы, точнее к увеличению ее возраста.
В принципе из (36) можно записать
(39)
5.2. Пространство
Для изучения вопроса о пространстве вернемся к вопросу о его размерности. В начале статьи в ходе рассуждений мы пришли к выводу, что наше пространство должно обладать свойствами жидкости или газа, а материя представляет собой возмущения этой жидкости. Теперь обратимся к вопросу меры пространства, иными словами, каким образом мы оказались в трехмерном мире. Чисто феноменологически, нет оснований считать, что нет четвертого, пятого или какого-то еще измерения. Но тогда возникает вопрос о выделенности нашего трехмерного мира. То есть, если бы существовало измерение выше третьего, то мы могли бы наблюдать несоблюдение законов сохранения, но многолетней историей доказано обратное, по крайней мере в пределах доступных нам масштабов длин и времени.
Единственное, чем можно объяснить в рассматриваемой нами модели, выделенность трехмерного мира - это наличие границы раздела многомерной, конкретно 4-мерной, жидкости. Поэтому попробуем изучить некоторые поверхностные явления в такой жидкости. Для начала, чтобы получить наглядное представление о их,
рассмотрим некоторые поверхностные явления в трехмерной несжимаемой жидкости.
Самым характерным явлением в жидкости, как известно, являются вихри. В качестве системы координат возьмем поверхность жидкости, а третью координату будем считать нормалью к поверхности. То обстоятельство, что мы рассматриваем поверхностные явления, выражается в том, что третья координата представлена чисто мнимой.
Тогда запишем выражение вихря в жидкости. Условимся обозначать операции по действительным координатам символами κ, μ и λ, а символом ,3 и i,3 - если операция производится над 3-действительным и 4-комплексным векторами соответственно. Для общего случая n комплексных и m действительных осей комплексного пространства, обозначение будет выглядеть как ni,m.
Псевдотензор вихря, как известно [4], запишется
Или в развернутой записи
Рассмотрим каждую компоненту в отдельности. Из (2) можно получить выражение для dx
(40)
Граничное условие на поверхности раздела выразится в том, что распространение “звука” должно происходить внутрь жидкости, таким образом, из (41) получим
(41)
Тогда, следуя тем же рассуждениям, что и в [4], можно записать
Где . Или, вводя новые обозначения
Окончательно, в таких обозначениях тензор поверхностного вихря запишется как
В случае 4-х мерной жидкости, рассуждения будут аналогичны и мы придем к выражению для тензора электромагнитного поля. Здесь не приведены эти выкладки, так как это известное выражение, к тому же все они аналогичны 3-х мерному случаю, в частности в [4], [6] приведены подробные выкладки. Просто запишем готовый результат
(42)
Окончательно, теперь запишем (42) в векторных обозначениях