Реферат: Энергетические характеристики гравитационных и магнитных аномалий
(1.26а)
Из этих равенств видно, что в двухмерной задаче энергетические спектры и автокорреляционные функции аномалий H, Z или гравитационных Vxz , Vхх , Vzz полностью взаимозаменяемы. Некоторые из них показаны на рис. 6. Это же положение верно в двухмерном случае и для аномалий Vх , Vz , т.е. для горизонтальной и вертикальной производных от любой исходной одной и той же аномалии. Оно же верно и для аномалий H, Z в случае косого и вертикального намагничивания и для нормированных функций Q и B аномалий H, Z и ΔT.
Это важное свойство автокорреляционных функций и энергетических спектров. Им не обладают исходные гравитационные и магнитные аномалии, за исключением функций Vxz , Vхх , Vzz в трехмерном случае и Vхх и Vzz — в двухмерном, для которых указанное свойство следует из уравнения Лапласа.
Легко показать, что энергетический спектр аномалии является всегда вещественной и четной функцией. Тогда и автокорреляционная функция аномалии будет вещественной и четной функцией. Рассмотрим взаимные энергетические спектры Q12 (ω) и Q21 (ω) двух функций f1 (x) и f2 (x). Для них верны соотношения
Рис. 1. Примеры разных аномалий, которым соответствуют одни и те же автокорреляционная функция B(τ) и энергетический спектр Q(ω)
, (1.27)
(1.28)
(1.29)
Кроме того, легко показать, что произведение Q12 Q21 и сумма Q12 + Q21 являются всегда четными функциями, а разность Q21 – Q12 — всегда мнимой. При этом, если одна аномалия четная, а вторая нечетная, то
(1.30)
Здесь, если первая функция — это , а вторая , где f — некоторая исходная аномалия (в двухмерном случае, например, для функций Vx , Vz ; Vxz , Vzz для магнитных аномалий H и Z, если одна из них четная, а вторая - нечетная), то учитывая доказанное выше равенство Qp = Qq получим для суммы аномалий F = p + q:
(1.31)
для взаимного энергетического спектра:
(1.32)
Что же касается взаимных корреляционных функций, то для них получим
где В12 (τ) + В21 (τ) — четная функция; В21 (τ) – В12 (τ) — нечетная функция.
Кроме того, из равенств (1.30), (1.31) и (1.32) соответственно получим (если одна из аномалий четная, вторая — нечетная)
, (1.33)
(1.34)
(1.35)
Полученные равенства можно использовать для замены выражений Q12 , Q21 и B12 через значения Q1 , Q2 и B21 при решении различных задач, в частности, при определении радиуса корреляции суммарного поля, состоящего из нескольких компонент — региональной, локальной составляющих и ошибок наблюдений; при определении возможности наличия корреляции между двумя сигналами и т.д. Из изложенного материала видно, что корреляционные функции и энергетические спектры аномалий обладают рядом других важных свойств, которые при решении многих задач гравиразведки и магниторазведки делают их применение предпочтительнее, чем применение самих аномалий. Прежде всего это то, что корреляционные функции и энергетические спектры аномалий являются некоторыми интегральными характеристиками, т.е. при определении их значений (хотя бы одного) используются все точки исходной аномалии — вся кривая, что приводит к значительному уменьшению случайных погрешностей инструментального и геологического характера. Влиянию ошибок наблюдений подвергается только центральная часть кривых корреляционных функций, что делает возможным исправление их значений в этой центральной части.
Для случая автокорреляции ближайшая к поверхности особая точка получаемых функций залегает в 2 раза глубже. Этот факт расширяет области применения различных трансформаций к значениям автокорреляционной функции.
Автокорреляционные функции и энергетические спектры аномалий для производных одного порядка взаимозаменяемы (в двухмерном случае равны), что позволяет по данным В или Q для аномалии одной производной определить значения рассматриваемых функций для аномалий другой производной или, если известны значения аномалий двух производных, например, Z и Hповышать точность вычисления функции B и Q Взаимозаменяемость находит, например, широкое применение при совместной интерпретации данных гравитационного и магнитного полей.
Функции B и Q являются всегда четными, и этот факт облегчает возможность получения различных соотношений, упрощает кривые и делает их более пригодными для определения формы, размеров и глубины залегания аномальных тел.
В то же время следует отметить, что из-за четности автокорреляционных функций и энергетических спектров аномалий в них пропадают полезные эффекты, связанные с асимметричностью кривых аномалий и косым намагничиванием магнитных масс. Это вызвано тем, что указанные функции формируются только значениями амплитудного спектра, влияние же фазового спектра в них отсутствует. Как раз этим и объясняется то, что аномалии с равными амплитудными и разными фазовыми спектрами имеют одни и те же энергетические характеристики — функции B и Q. Поэтому полезное свойство
четности их кривых в некоторых случаях является их недостатком. Но применение энергетических характеристик аномалий основано на использовании их полезных свойств. Полезные же эффекты асимметричности косого намагничивания аномалий четко отражаются на значениях взаимных энергетических спектров и взаимных корреляционных функций, и при необходимости их можно определить из значений этих функций.
3. Интегрирование корреляционных функций знакопеременных аномалий
Другое свойство автокорреляционных функций для случая знакопеременных аномалий заключается в следующем. Пусть f(x) — гравитационная или магнитная аномалия, автокорреляционная функция которой B(τ) имеет нуль в одной точке τ0 (вторая точка нуля находится в бесконечности). Для таких аномалий