Реферат: Фізика атомів і молекул
Переходи електронів в атомі водню, які дозволені правилом відбору показані на рис. 3.
Серії Лаймана відповідають переходи np1s, (n=2,3,4,...).
Серії Бальмера відповідають переходи np2s, ns2p і nd2p, (n=3,4,5,...).
Стан 1 s є основним станом атома водню. У цьому стані атом має найменшу енергію. Для виведення атома з основного стану йому слід надати необхідну енергію за рахунок зовнішнього джерела. Таким джерелом енергії може бути нагрівання, електричний розряд або опромінення.
Рис. 3
При опромінені водню фотонами від зовнішнього джерела їх енергія поглинається повністю лише у випадку коли енергія фотонів у точності збігається з різницею енергії двох енергетичних рівнів. У цьому випадку фотон зникає повністю, передаючи атому всю свою енергію. Атом не може поглинути частину фотона, оскільки фотон є неподільним.
3. Механічний і магнітний моменти атома водню
Орбітальне квантове число l визначає стан електрона в атомі. Якщо рух електрона характеризується значенням квантового числа l =0, то електрон перебуває в s -стані, а сам електрон називається s-електроном. Квантовому числу l = 1 відповідає р-стан електрона,l =2 ― d-стан,l =3 ― f-стан і т. д.
Для електрона, що знаходиться в атомі водню на n-му
енергетичному рівні, можливі одна колова орбіта при l = n -1 in -1
еліптичних орбіт. Із зменшенням l збільшується ступінь витягнутості орбіти. Отже, при заданому головному квантовому числі орбітальне квантове число l визначає форму орбіти.
У квантовій механіці орбітальний момент імпульсу електрона визначається таким співвідношенням:
, де (l=0,1,2,...n-1). (25)
Цей вираз свідчить про можливість таких рухів електрона, для яких (приl =0) орбітальний момент імпульсу електрона дорівнює нулю.
Третє квантове число ml , яке називається магнітним квантовим числом, визначає просторовий розподіл траєкторії руху електрона, а також проекцію вектора механічного моменту або моменту імпульсу орбіти на заданий напрям.
Орбіту, по якій рухається електрон, можна розглядати як контур струму. Такий контур характеризується певним значенням орбітального магнітного моменту електрона , векторною величиною, що направлена вздовж осі орбіти в той бік, куди направлена індукція магнітного поля, створюваного цим контуром. Між вектором і існує такий зв’язок
= - =-g , (26)
де е ― заряд електрона; m ― маса електрона; g ― гіромагнітне відношення.
Враховуючи значення Ll із (25) одержимо:
=-g = -, (27)
де б = g ― магнетон Бора.
Як видно з (26) вектори і мають протилежні напрямки.
Вектор може мати 2 l +1 просторових орієнтацій, а це означає, що при даному l електрони в атомі, у зовнішньому магнітному полі, можуть рухатися по 2 l +1 орбітах, які відрізняються своєю орієнтацією щодо напрямку магнітного поля
, (3.4)
де ml ― магнітне квантове число.
На рис. 4 зображено можливі значення проекції орбітального механічного моменту на напрям осі z зовнішнього магнітного поля для випадків l =1 il =2.
Рис.4
Таким чином просторове квантування приводить до розчеплення в магнітному полі енергетичного рівня електрона на ряд підрівнів, а отже, і до розчеплення спектральних ліній. Таке явище спостерігав Зеєман. Розчеплення спектральних ліній також можливе в електричному полі ─ ефект Штарка.
Рис. 5