Реферат: функция

4. Линейная функция ни четная ни нечетная.

5. Функция возрастает если k>0,

Функция убывает если k<0.

6. Функция непрерывна.

Квадратичная функция.

Это функция вида ,

Графиком квадратичной функции служит парабола с осью, параллельной оси . При вершина параболы оказывается в точке .

Парабола ()

В общем случае вершина лежит в точке . Если , то "рога" параболы направлены вверх, если , то вниз.

.Парабола с вершиной в точке ()

1. Область определения квадратичной функции – вся числовая прямая.

2. При b ¹0 функция не является четной и не является нечетной. При b =0 квадратичная функция – четная.


3.


???. 4 ???. 5

4. Квадратичная функция непрерывна и дифференцируема во всей области определения.

5. Функция имеет единственную критическую точку

6. x =- b /(2 a ) . Если a >0, то в точке x =- b /(2 a ) функция имеет минимум. При x <- b /(2 a ) функция монотонно убывает, при x >- b /(2 a ) монотонно возрастает.

a. Если а <0, то в точке x =- b /(2 a ) функция имеет максимум. При x <- b /(2 a ) функция монотонно возрастает, при x >- b /(2 a ) монотонно убывает.

b. Точка графика квадратичной функции с абсциссой x =- b /(2 a ) и ординатой y = -(( b 2 -4 ac )/4 a ) называется вершиной параболы .

7. Область изменения функции: при a >0 – множество значений функции [-(( b 2 -4 ac )/4 a ); + ¥ ) ; при a <0 – множество значений функции (- ¥ ;-(( b 2 -4 ac )/4 a )] .

8. График квадратичной функции пересекается с осью 0 y в точке y = c . В случае, если b 2 -4 ac >0 , график квадратичной функции пересекает ось 0 x в двух точках (различные действительные корни квадратного уравнения); если b 2 -4 ac =0 (квадратное уравнение имеет один корень кратности 2), график квадратичной функции касается оси 0x в точке x =- b /(2 a ) ; если b 2 -4 ac <0 , пересечения с осью 0 x нет.

a. Из представления квадратичной функции в виде (1) также следует, что график функции симметричен относительно прямой x =- b /(2 a ) – образа оси ординат при параллельном переносе r =(- b /(2 a ); 0) .

b. График функции

9. f ( x )= ax 2 + bx + c

10. (или f ( x )= a ( x + b /(2 a ))2 -( b 2 -4 ac )/(4 a )) может быть получен из графика функции f ( x )= x 2 следующими преобразованиями:

а) параллельным переносом r =(- b /(2 a ); 0) ;

б) сжатием (или растяжением) к оси абсцисс в а раз;

в) параллельным переносом r =(0; -(( b 2 -4 ac )/(4 a ))) .

Степенная функция.

Это функция вида , . Рассматриваются такие случаи:

а). Если , то . Тогда , ; если число - чётное, то и функция - чётная (то есть при всех ); если число - нечётное, то и функция - нечётная (то есть при всех ).

График степенной функции при

б) Если , , то . Ситуация с чётностью и нечётностью при этом такая же, как и для : если - чётное число, то и - чётная функция; если - нечётное число, то и - нечётная функция.

График степенной функции при

Снова заметим, что при всех . Если , то при всех , кроме (выражение не имеет смысла).

в). Если - не целое число, то, по определению, при : ; тогда , .

График степенной функции при

При , по определению, ; тогда .

График степенной функции при

К-во Просмотров: 755
Бесплатно скачать Реферат: функция