Реферат: Гидравлика 2
ГИДРОСТАТИКА
4. Уравнение Эйлера.
Выделим в жидкости некоторый объем. Полная сила, действующая на выделенный объем жидкости, равна интегралу
(12)
от давления, взятому по поверхности рассматриваемого объема. Преобразуя его в интеграл по объему, имеем:
(13)
Отсюда видно, что на каждый элемент объема dV жидкости действует со стороны окружающей его жидкости сила . Другими словами, можно сказать, что на единицу объема жидкости действует сила -grad р.
Мы можем теперь написать уравнение движения элемента объема жидкости, приравняв силу - grad p произведению массы единицы объема жидкости на ее ускорение
:
. (14)
Стоящая здесь производная определяет не изменение скорости жидкости в данной неподвижной точке пространства, а изменение скорости определенной передвигающейся в пространстве частицы жидкости. Эту производную надо выразить через величины, относящиеся к неподвижным в пространстве точкам. Для этого заметим, что изменение вскорости данной частицы жидкости в течение времени dt складывается из двух частей: из изменения скорости в данной точке пространства в течение времени dt и из разности скоростей (в один и тот же момент времени) в двух точках, разделенных расстоянием dr , пройденным рассматриваемой частицей жидкости в течение времени dt. Первая из этих частей равна
(15)
где теперь производная берется при постоянных х, у, z , т.е. в заданной точке пространства. Вторая часть изменения скорости равна
(16)
Таким образом,
(17)
или, разделив обе стороны равенства на dt,
. (18)
Подставляя полученное соотношение в (14), находим:
. (19)
Это и есть искомое уравнение движения жидкости, установленное впервые Л. Эйлером в 1775 г. Оно называется уравнением Эйлера является одним из основных уравнений гидродинамики .
Если жидкость находится в поле тяжести, то на каждую единицу ее объема действует еще сила , где g есть ускорение силы тяжести. Эта сила должна быть прибавлена к правой стороне уравнения (14), так что (19) приобретает вид
. (20)
При выводе уравнений движения мы совершенно не учитывал процессов диссипации энергии, которые могут иметь место в текущей жидкости вследствие внутреннего трения (вязкости) в жидкости и теплообмена между различными ее участками. Поэтому все излагаемое здесь относится только к таким движениям жидкостей и газов, при которых несущественны процессы теплопроводности и вязкости; о таком движении говорят как о движении идеальной жидкости.
Отсутствие теплообмена между отдельными участками жидкости (а также, конечно, и между жидкостью и соприкасающимися с нею окружающими телами) означает, что движение происходит адиабатически, причем адиабатически в каждом из участков жидкости. Таким образом, движение идеальной жидкости следует рассматривать как адиабатическое.
При адиабатическом движении энтропия каждого участка жидкости остается постоянной при перемещении последнего в пространстве. Обозначая посредством энтропию, отнесенную к единице массы жидкости, мы можем выразить адиабатичность движения уравнением
, (21)
где полная производная по времени означает, как и в (14), изменение энтропии заданного перемещающегося участка жидкости. Эту производную можно написать в виде
. (22)
Это есть общее уравнение, выражающее собой адиабатичность движенияидеальной жидкости. С помощью его можно написать в виде «уравнения непрерывности» для энтропии