Реферат: Интеграл по комплексной переменной

Что и требовалось доказать.

Таблица основных изображений:

F(p) f(t) F(p) f(p)
1

Изображение производных.

Теорема. Если , то справедливо выражение :

(1)

Доказательство :

(2)

(3)

Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :

Что и требовалось доказать.

Пример: Решить дифференциальное уравнение :

Если x(0)=0 и x’(0)=0

Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.

Изображающее уравнение :

Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .

Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.

Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .

Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до ¥ в области изображений.

Понятие о свертке функций. Теорема о свертке.

Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :

К-во Просмотров: 733
Бесплатно скачать Реферат: Интеграл по комплексной переменной