Реферат: Интеграл по комплексной переменной

Свертка обозначается следующим образом :

(1’)

Равенства (1) и (1’) идентичны.

Свертка функции подчиняется переместительному закону.

Доказательство:

Теорема о умножении изображений. Пусть и , тогда произведение изображений представляется сверткой оригиналов .

Доказательство :

Пусть изображение свертки

(1)

Интеграл (1) представляет собой повторный интеграл относительно переменных t и t . Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно.

Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).

Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.

Теорема Эфроса. Пусть функция находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда .

В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда

(2)

Соотношение (2) применяется при решении дифференциальных уравнений.

Обратное преобразование Лапласа.

- Это прямое преобразование Лапласа.

Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :

, где s – некоторая константа.

Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.

Теоремы разложения.

Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.

Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .

Вторая теорема разложения. Если изображение представляется д робно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни a1, a2, …, a n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :

К-во Просмотров: 734
Бесплатно скачать Реферат: Интеграл по комплексной переменной