Реферат: Интеграл по поверхности первого рода

Специальные векторные поля.

1 Дивергенция.

2 Соленоидальные поля. Свойства.

3

1. Определение дивергенции

Теорема Остроградского -Гаусса

Пример.

Найти поток вектора направленный в отрицательную сторону оси Ох, через часть параболоида отсекаемый плоскостью

Решение:


Ответ.

Свойства соленоидальных полей.

Определение. Векторное поле , для всех точек которого называется соленоидальным в области . Соленоидальное поле свободно от источников.

Свойства соленоидальных полей.

1. Если соленоидальное поле задано в односвязной области, то поток вектора через любую замкнутую поверхность этой области равно нулю.

Пусть - соленоидальное поле в односвязной области. Тогда поток вектора через любую поверхность натянутую на заданный контур Г, не зависит от вида этой поверхности, а зависит лишь от контура.


применим теорему Остроградского-Гаусса.

2. Свойства векторной трубки.

Определение. Векторной линией называется линия в каждой точке которой направление касательной к ней совпадает с направлением поля .

векторной линии .

К-во Просмотров: 255
Бесплатно скачать Реферат: Интеграл по поверхности первого рода