Реферат: Интегрирование линейного дифференциального уравнения с помощью степенных рядов
Для решения дифференциального уравнения:
(I.1)
где функции аi(t) (i=0,1,2) разлагаются в степенной ряд в окрестности точки t0 с радиусами сходимости ri :
i=0,1,2
необходимо найти два линейно-независимых решения 1(t), 2(t). Такими решениями будут, например, решения уравнения (I.1) с начальными условиями:
Решения i будем искать в виде степенного ряда:
(I.2)
методом неопределенных коэффициентов.
Для решения воспользуемся теоремами.
Теорема 1: (об аналитическом решении)
Если p0(x), p1(x), p2(x) являются аналитическими функциями x в окрестности точки x=x0 и p0(x)≠0, то решения уравнения p0(x)y’’ + p1(x)y’ + p2(x)y = 0 также являются аналитическими функциями в некоторой окрестности той же точки и, значит, решения уравнения можно искать в виде: y=l0 + l1(x-x0) + l2(x-x0)2 + … + ln(x-x0)n + …
Теорема 2: (о разложимости решения в обобщенный степенной ряд)
Если уравнение (I.1) удовлетворяет условиям предыдущей теоремы, но x=x0 является нулем конечного порядка S функции a0(x), нулем порядка S-1 или выше функции a1(x) (если S>1) и нулем порядка не ниже S-2 коэффициента a2(x) (если S>2), то существует, по крайней мере, одно нетривиальное решение уравнения (I.1) в виде суммы обобщенного степенного ряда:
y= l0(x - x0)k + l1(x – x0)k+1 + … + ln(x-x0)k+n + …
где k- некоторое действительное число, которое может быть как целым, так и дробным, как положительным, так и отрицательным.
Рассмотрим уравнение:
(I.3)
a0(t) = t + 2 ; a1(t) = -1; a2(t) = -4t3; a0(t) ≠ 0 t
по теореме 2 хотя бы одно нетривиальное решение уравнения (I.3) может быть найдено в виде суммы обобщенного степенного ряда (t) = cn(t-t0)n
возьмем t0 = 0, будем искать решение в виде (t) = cntn (I.4)
Опираясь на теорему 1 и, дифференцируя ряд (I.4) почленно два раза, получим
(t) = ncntn-1, (t) = n(n-1)cntn-2
(2+t)( n(n-1)cntn-2) – (ncntn-1) – 4t3( cntn)=0
Вычислим коэффициенты при соответствующих степенях:
t0 : 4c2 – c1=0 4c2-c1-4c-3=0
t1 :
--> ЧИТАТЬ ПОЛНОСТЬЮ <--