Реферат: Исследование посещаемости WEB сайта
Сложность и взаимное переплетение отдельных факторов, обусловливающих исследуемое экономическое явление (процесс), могут проявляться в так называемой мультиколлинеарности. Под
мультиколлинеарностью понимается тесная зависимость между факторными признаками, включенными в модель.
Наличие мультиколлинеарности между признаками приводит к:
• искажению величины параметров модели, которые имеют тенденцию к завышению;
• изменению смысла экономической интерпретации коэффициентов регрессии;
. слабой обусловленности системы нормальных уравнений;
. осложнению процесса определения наиболее существенных факторных признаков.
Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 .
Устранение мультиколлинеарности может реализовываться через исключение из корреляционной модели одного или нескольких линейно-связанных факторных признаков или преобразование исходных факторных признаков в новые, укрупненные факторы.
Вопрос о том, какой из факторов следует отбросить, решается на основании качественного и логического анализов изучаемого явления.
Качество уравнения регрессии зависит от степени достоверности и надежности исходных данных и объема совокупности. Исследователь должен стремиться к увеличению числа наблюдений, так как большой объем наблюдений является одной из предпосылок построения адекватных статистических моделей.
Аналитическая форма выражения связи результативного признака и ряда факторных называется многофакторным (множественным) уравнением регрессии, или моделью связи.
Уравнение линейной множественной регрессии имеет вид:
Y=A0+A1X1+….AkXk
Коэффициенты Аn вычисляются при помощи систем нормальных уравнений. Например система нормальных уравнений для вычисления коэффициентов регрессии для уравнения линейной регрессии с двумя факторными признаками:
где An=an
Общий вид нормальных уравнений для расчета коэффициентов регрессии:
Оценка существенности связи, принятие решения на основе уравнения регрессии.
Проверка адекватности моделей, построенных на основе уравнений регрессии, начинается с проверки значимости каждого коэффициента регрессии.
Значимость коэффициентов регрессии осуществляется с помощью
t-критерия Стьюдента:
- дисперсия коэффициента регрессии.
Параметр модели признается статистически значимым, если tp>tкр
Наиболее сложным в этом выражении является определение дисперсии, которая может быть рассчитана двояким способом.
Наиболее простой способ, выработанный методикой экспериментирования, заключается в том, что величина дисперсии коэффициента регрессии может быть приближенно определена по выражению: