Реферат: Исследование посещаемости WEB сайта
k - число факторных признаков в уравнении.
Наиболее сложным этапом, завершающим регрессионный анализ, является интерпретация уравнения, т. е. перевод его с языка статистики и математики на язык экономиста.
Интерпретация моделей регрессии осуществляется методами той отрасли знаний, к которой относятся исследуемые явления. Но всякая интерпретация начинается со статистической оценки уравнения регрессии в целом и оценки значимости входящих в модель факторных признаков, т. е. с выяснения, как они влияют на величину результативного признака. Чем больше величина коэффициента регрессии, тем значительнее влияние данного признака на моделируемый. Особое значение при этом имеет знак перед коэффициентом регрессии. Знаки коэффициентов регрессии говорят о характере влияния на результативный признак. Если факторный признак имеет знак плюс, то с увеличением данного фактора результативный признак возрастает; если факторный признак со знаком минус, то с его увеличением результативный признак уменьшается. Интерпретация этих знаков полностью определяется социально-экономическим содержанием моделируемого (результативного) признака. Если его величина изменяется в сторону увеличения, то плюсовые знаки факторных признаков имеют положительное влияние. При изменении результативного призна-л-1 в сторону снижения положительное значение имеют минусовые знаки факторных признаков. Если экономическая теория подсказывает, что факторный признак должен иметь положительное значение, а он со знаком минус, то необходимо проверить расчеты параметров уравнения регрессии. Такое явление чаще всего бывает в силу допущенных ошибок при решении. Однако следует иметь в виду, что при анализе совокупного влияния факторов, при наличии взаимосвязей между ними характер их влияния может меняться. Для того чтобы быть уверенным, что факторный признак изменил знак влияния, необходима тщательная проверка решения данной модели, так как часто знаки могут меняться в силу допустимых ошибок при сборе или обработке информации.
При адекватности уравнения регрессии исследуемому процессу возможны следующие варианты.
1. Построенная модель на основе ее проверки по F-критерию Фишера в целом адекватна, и все коэффициенты регрессии значимы. Такая модель может быть использована для принятия решений к осуществлению прогнозов.
2. Модель по F-критерию Фишера адекватна, но часть коэффициентов регрессии незначима. В этом случае модель пригодна для принятия некоторых решений, но не для производства прогнозов.
3. Модель по F-критерию Фишера адекватна, но все коэффициенты регрессии незначимы. Поэтому модель полностью считается неадекватной. на ее основе не принимаются решения и не осуществляются прогнозы.
Практическая часть работы
1. Описание объекта
В нашем случае объектом исследования является совокупность наблюдений за посещаемостью WEB сайта Комитета по делам семъи и молодежи Правительства г. Москвы www.telekurs.ru/ismm. Тематика сайта – это предоставление социально незащищенным слоям населения: молодежи, студентам информации о трудоустройстве в Москве. Информация ежедневно обновляется, приблизительно 200 новых вакансий в день. Также на сайте содержится информация о текущих программах правительства г. Москвы направленных на поддержку указанных выше категорий населения. Моделируемым показателем является N- количество человек в день посетивших сайт.
2. Факторы формирующие моделируемое явление
Отбор факторов для модели осуществляется в два этапа. На первом идет анализ, по результатам которого исследователь делает вывод о необходимости рассмотрения тех или иных явлений в качестве переменных, определяющих закономерности развития исследуемого процесса, на втором – состав предварительно отобранных факторов уточняется непосредственно по результатам статистического анализа.
Полученные данные с помощью программы наблюдения за компьютерной сетью (NetMedic, Netlab) являются не совсем точными, но довольно близки к реальным и по этому будем считать, что они дают представление о характере процесса. (получение более точных данных было для автора невозможно в связи с недостаточной технической базой) Из совокупности этих факторов я отобрал следующие :
Зависимый фактор:
N- количество человек в день посетивших сайт.
Для модели в абсолютных показателях
Независимые факторы:
P - Загруженность внутренней сети (чел/день)
S – Cкорость обмена данными в сети Кбит/сек
V – Кол-во вакансий на текущий день
B – Количество «Баннеров» – рекламных ссылок на исследуемый сайт.
Данные представлены в таблице 1.
Таблица 1
№ Объекта наблюдения |
N Кол-во человек в день |
P Загруженность внутренней сети (чел/ден) |
S Скорость обмена данными в сети Кбит/сек |
К-во Просмотров: 422
Бесплатно скачать Реферат: Исследование посещаемости WEB сайта
|