Реферат: История чисел и счисления

А все дело в том, что отрывок написан с использованием недесятеричной системы счисления, такой привычной для большинства людей. Можно легко догадаться, какую именно систему использовал автор. Секрет выдается фразой: «Спустя год (полсе 44 лет), 100-летним молодым человеком…» Если в от прибавления одной единицы число 44 преображается в 100, значит цифра 4 – наибольшая в этой системе счисления, т. е. основанием системы является 5. Немного сложнее перевести остальные числа в «родную» десятичную. Например, несложно догадаться, что одна единица третьего разряда равна 5 во второй степени, т. е. 25 (так же в десятичной системе одна единица третьего разряда равна 100, т. е. 102 ). А единица второго разряда равна 51 , третьего – 50 . Теперь несложно восстановить реальную биографию чудака-автора.

При желании можно создать собственную биографию в таком же роде. Скажем, вам 17 лет. Воспользуемся для записи возраста четвертичной системой счисления. Разделим 17 на 4:

17 : 4 = 4, остаток 1

Остаток – это и есть число единиц первого разряда. Результат целочисленного деления снова поделим на 4:

4 : 4 = 1 , остаток 0

Теперь остаток – число единиц второго разряда. Ну а последнее частное – единицы третьего разряда. Теперь составим из наших ответов число. Получили 101, т. е. 1710 =1014 .

Помеха может возникнуть вследствие того, что в некоторых случаях не будет доставать обозначений цифр. При изображении чисел в системах с основаниями больше 10 может явиться надобность в цифрах «десять», «одиннадцать» и т. д. [№1, стр. 56-57]

Обычно для обозначения их применяют латинский алфавит: «десять» обозначают буквой «А», «одиннадцать» - буквой «В». Когда буквы заканчиваются, ничего не поделаешь – придется обозначать двумя, тремя буквами сразу, да еще и обводить, скажем, кружочком, чтобы было видно, что это цифра, а не двузначное число.

Нетрудно производить арифметические действия в разных системах счисления. Только надо помнить, что переходить через разряд надо, когда цифра превышает максимально допустимую в данной системе. Легко догадаться, что для любой системы такая цифра на единицу меньше основания. Заметим, что в самой «маленькой» из систем – двоичной – выполнять разнообразные арифметические действия с точки зрения умственной нагрузки легче всего, хотя для этого понадобится много времени и бумаги (если считать столбиком). Ну а в целом это дело привычки.

Легко доказать, что в любой системе счисления выполняются такие положения (если в системе имеются соответствующие цифры):

121 : 11 = 11

144 : 12 = 12

21 • 21 = 441. [№1, стр. 67]


Глава 2. Способы запоминания чисел.

§ 1 Различные приспособления для запоминания чисел.

Вероятно, самый древний способ запоминания чисел – камешками. Сколько камешков – столько предметов надо запомнить. Когда камешков не стало хватать, человек придумал разрядность (системы счисления). Число в таком виде записать легче, например, при помощи узелков. Так делали древние перуанцы, завязывая узелки на нескольких сплетенных вместе веревках. Такой «прибор» назывался «квипос». Он был в принципе эквивалентен нашим счетам и ,без сомнения, связанный с ними общностью происхождения. На таких счетах однократно завязанный узел означал 10, двукратно – 100 и т. д. Однако пользоваться таким прибором нелегко: на завязывание – перевязывание узелков уходит много времени. Выход нашелся – сделать систему подвижной.

Древние народы — египтяне, греки, римляне — упо­требляли при вычислениях счетный прибор «абак». Этобыла доска (стол), разграфленная на полосы, по кото­рым передвигали особые шашки, игравшие роль косто­чек наших счетов Такой вид имел греческий абак Абак римский имел форму медной доски с желобами (проре­зами), в которых передвигались кнопки. Родственен абаку перуанский «квипос» — ряд ремней или бечевок с завязанными на них узлами этот счетный прибор по­лучит особенное распространение среди первых обитате­лей Южной Америки, но, без сомнения, был в употре­блении также и в Европе. В средине века, вплоть до XVI века, подобные приспособления были широко распространены в Европе. Но теперь видоизмененный абак — счеты — сохранился, кажется, только у нас, да в Китае (семикосгочковые счеты — «суан-пан» *) и Японии (тоже семикосточковые счеты — «соробан»). Каждый грамотный человек умеет там выполнять на таких счетах четыре арифметических действия Между тем Запад почти не знает счетов, — вы не найдете их ни в одном магазине Ев­ропы, и только в начальных школах имеются огромные счеты — наглядное классное пособие при обучении нуме­рации. Быть может, потому-то мы и не ценим этого счет­ного прибора так высоко, как он за­служивает, а смо­трим на него как на наивную кустарную самодельщину в об­ласти счетных при­боров Японцы це­нят свои счеты вы­соко. Вот как отзы­вается о соробане один японский уче­ный «Несмотря на свою древность, со­робан превосходит все современные счетные приборы легкостью обращения с ним, просто­тою устройства и дешевизною»

Мы тоже вправе были бы гордиться нашими контор­скими счетами, так как при изумительной простоте устройства они по достигаемым на них результатам могут соперничать в некоторых отношениях даже со сложными, дорого стоящими счетными машинами. [№1, стр.34-36, 39-40]

Об арифметических действиях на счетах будет написано в главе 3.

§2 Современные способы запоминания чисел.

Самая простая система счисления – двоичная, так как она использует только две цифры: ноль и один. Именно такую систему счисления используют современные компьютеры. В основном из-за того, что такой «язык» легок для «понимания» электронных устройств: наличие электрического сигнала означает единицу, его отсутствие – ноль. А дальше открываются поистине безграничные возможности для запоминания самой разной информации – ведь любой ее вид, будь то текст, изображение, звук или видео, можно представить в виде набора чисел. Ввели даже единицу информации: информация, говорящая об одном из 256 равновероятных событий, имеет объем в один байт.

Информацию в виде двоичного кода можно размещать на разнообразных носителях. Например, на гибких магнитных лентах – в виде намагниченных и ненамагниченных областей, на поверхности лазерного диска – в виде углублений (питов) и выступов, в интегральных микросхемах – сложным сочетанием полупроводниковых приборов, выполненным на единой подложке из диэлектрика.

В настоящее время разобрав калькулятор, не увидите там ничего из электроники, кроме маленькой интегральной микросхемы, залитой небольшой каплей эпоксидной смолы. Это наглядно иллюстрирует тот факт, что будущее современной техники в ее миниатюрности. Такой прибор починить не представляется возможным:узор из тысяч плоских транзисторов величиной в доли микрона невозможно изменить лучшему специалисту. Так и делают современные микросхемы, защищая их раз и навсегда прочной оболочкой.

Такая сложность вычислительной техники является результатом многовекового развития. Перфокарты (картонные карточки в отверстиями) впервые были применены в 1787 г., когда французский ткач Робер Фалькон использовал их для управления механическим ткацким станком. Позже эта система была усовершенствована другим ткачем, Жозефом Жаккаром. Ряды отверстий (перфорация) в наборе карт использовались для хранения деталей узора. При замене карточек ткацкий станок ткал другой узор.

«Жаккардовый станок выполнит любой узор, который в состоянии представить себе воображение», - говорил англицский математик Чарльз Бэббидж. Его настолько потрясло разнообразие, которое давали перфокарты, что в 1832 г. он начал проектировать то, что назвал «аналитической машиной», однако, в то время построить такой механизм было невозможно из-за его сложности. Но с этого началась эра электронной информации. [№3.2, стр. 99-100]

Принцип работы перфокарт весьма прост: в том месте, где в карте проделано отверстие, могут соприкасаться два электрода, и через них потечет ток. Понятно, что ток при относительно малом напряжении не сможет пробить картонную карту – сигнала не будет. Получается, что перфокарта тоже использовала двоичный код для записи информации в позиционной системе счисления – каждое отверстие или его отсутствие несут двоякую информацию – о своем местоположении и об одном из двух фактов – есть дырка или же ее нет.

§3 Память на числа.

Поразительная сила образов (или эйдосов, как их называли древние греки) была известна человечеству с древнейших времен. В настоящее время эйдетизм рассматривается как разновидность образной памяти, выраженной в сохранении ярких, наглядных образов предметов. Обладающий эйдетизмом человек не воспроизводит в памяти воспринимавшиеся им предметы, а продолжает как бы видеть их.

У разных лиц бывает и различная память по отношению к числам, годам, ценам; различие это зависит от неодинаковой степени развития математических способностей. Лицо, широко развившее эти способности, будет неизменно сохранять ясное и прямое впечатление о числах и обо всем, связанном с ними, тогда как лицо со слабо развитыми способностями найдет затруднительным помнить что-либо подобное, даже усиленно занимаясь умственными вычислениями, но последние, однако, могут развить эту способность. [№6, В.В.Аткинсон]

К-во Просмотров: 335
Бесплатно скачать Реферат: История чисел и счисления