Реферат: История чисел и счисления
А все дело в том, что отрывок написан с использованием недесятеричной системы счисления, такой привычной для большинства людей. Можно легко догадаться, какую именно систему использовал автор. Секрет выдается фразой: «Спустя год (полсе 44 лет), 100-летним молодым человеком…» Если в от прибавления одной единицы число 44 преображается в 100, значит цифра 4 – наибольшая в этой системе счисления, т. е. основанием системы является 5. Немного сложнее перевести остальные числа в «родную» десятичную. Например, несложно догадаться, что одна единица третьего разряда равна 5 во второй степени, т. е. 25 (так же в десятичной системе одна единица третьего разряда равна 100, т. е. 102 ). А единица второго разряда равна 51 , третьего – 50 . Теперь несложно восстановить реальную биографию чудака-автора.
При желании можно создать собственную биографию в таком же роде. Скажем, вам 17 лет. Воспользуемся для записи возраста четвертичной системой счисления. Разделим 17 на 4:
17 : 4 = 4, остаток 1
Остаток – это и есть число единиц первого разряда. Результат целочисленного деления снова поделим на 4:
4 : 4 = 1 , остаток 0
Теперь остаток – число единиц второго разряда. Ну а последнее частное – единицы третьего разряда. Теперь составим из наших ответов число. Получили 101, т. е. 1710 =1014 .
Помеха может возникнуть вследствие того, что в некоторых случаях не будет доставать обозначений цифр. При изображении чисел в системах с основаниями больше 10 может явиться надобность в цифрах «десять», «одиннадцать» и т. д. [№1, стр. 56-57]
Обычно для обозначения их применяют латинский алфавит: «десять» обозначают буквой «А», «одиннадцать» - буквой «В». Когда буквы заканчиваются, ничего не поделаешь – придется обозначать двумя, тремя буквами сразу, да еще и обводить, скажем, кружочком, чтобы было видно, что это цифра, а не двузначное число.
Нетрудно производить арифметические действия в разных системах счисления. Только надо помнить, что переходить через разряд надо, когда цифра превышает максимально допустимую в данной системе. Легко догадаться, что для любой системы такая цифра на единицу меньше основания. Заметим, что в самой «маленькой» из систем – двоичной – выполнять разнообразные арифметические действия с точки зрения умственной нагрузки легче всего, хотя для этого понадобится много времени и бумаги (если считать столбиком). Ну а в целом это дело привычки.
Легко доказать, что в любой системе счисления выполняются такие положения (если в системе имеются соответствующие цифры):
121 : 11 = 11
144 : 12 = 12
21 • 21 = 441. [№1, стр. 67]
Глава 2. Способы запоминания чисел.
§ 1 Различные приспособления для запоминания чисел.
Вероятно, самый древний способ запоминания чисел – камешками. Сколько камешков – столько предметов надо запомнить. Когда камешков не стало хватать, человек придумал разрядность (системы счисления). Число в таком виде записать легче, например, при помощи узелков. Так делали древние перуанцы, завязывая узелки на нескольких сплетенных вместе веревках. Такой «прибор» назывался «квипос». Он был в принципе эквивалентен нашим счетам и ,без сомнения, связанный с ними общностью происхождения. На таких счетах однократно завязанный узел означал 10, двукратно – 100 и т. д. Однако пользоваться таким прибором нелегко: на завязывание – перевязывание узелков уходит много времени. Выход нашелся – сделать систему подвижной.
Древние народы — египтяне, греки, римляне — употребляли при вычислениях счетный прибор «абак». Этобыла доска (стол), разграфленная на полосы, по которым передвигали особые шашки, игравшие роль косточек наших счетов Такой вид имел греческий абак Абак римский имел форму медной доски с желобами (прорезами), в которых передвигались кнопки. Родственен абаку перуанский «квипос» — ряд ремней или бечевок с завязанными на них узлами этот счетный прибор получит особенное распространение среди первых обитателей Южной Америки, но, без сомнения, был в употреблении также и в Европе. В средине века, вплоть до XVI века, подобные приспособления были широко распространены в Европе. Но теперь видоизмененный абак — счеты — сохранился, кажется, только у нас, да в Китае (семикосгочковые счеты — «суан-пан» *) и Японии (тоже семикосточковые счеты — «соробан»). Каждый грамотный человек умеет там выполнять на таких счетах четыре арифметических действия Между тем Запад почти не знает счетов, — вы не найдете их ни в одном магазине Европы, и только в начальных школах имеются огромные счеты — наглядное классное пособие при обучении нумерации. Быть может, потому-то мы и не ценим этого счетного прибора так высоко, как он заслуживает, а смотрим на него как на наивную кустарную самодельщину в области счетных приборов Японцы ценят свои счеты высоко. Вот как отзывается о соробане один японский ученый «Несмотря на свою древность, соробан превосходит все современные счетные приборы легкостью обращения с ним, простотою устройства и дешевизною»
Мы тоже вправе были бы гордиться нашими конторскими счетами, так как при изумительной простоте устройства они по достигаемым на них результатам могут соперничать в некоторых отношениях даже со сложными, дорого стоящими счетными машинами. [№1, стр.34-36, 39-40]
Об арифметических действиях на счетах будет написано в главе 3.
§2 Современные способы запоминания чисел.
Самая простая система счисления – двоичная, так как она использует только две цифры: ноль и один. Именно такую систему счисления используют современные компьютеры. В основном из-за того, что такой «язык» легок для «понимания» электронных устройств: наличие электрического сигнала означает единицу, его отсутствие – ноль. А дальше открываются поистине безграничные возможности для запоминания самой разной информации – ведь любой ее вид, будь то текст, изображение, звук или видео, можно представить в виде набора чисел. Ввели даже единицу информации: информация, говорящая об одном из 256 равновероятных событий, имеет объем в один байт.
Информацию в виде двоичного кода можно размещать на разнообразных носителях. Например, на гибких магнитных лентах – в виде намагниченных и ненамагниченных областей, на поверхности лазерного диска – в виде углублений (питов) и выступов, в интегральных микросхемах – сложным сочетанием полупроводниковых приборов, выполненным на единой подложке из диэлектрика.
В настоящее время разобрав калькулятор, не увидите там ничего из электроники, кроме маленькой интегральной микросхемы, залитой небольшой каплей эпоксидной смолы. Это наглядно иллюстрирует тот факт, что будущее современной техники в ее миниатюрности. Такой прибор починить не представляется возможным:узор из тысяч плоских транзисторов величиной в доли микрона невозможно изменить лучшему специалисту. Так и делают современные микросхемы, защищая их раз и навсегда прочной оболочкой.
Такая сложность вычислительной техники является результатом многовекового развития. Перфокарты (картонные карточки в отверстиями) впервые были применены в 1787 г., когда французский ткач Робер Фалькон использовал их для управления механическим ткацким станком. Позже эта система была усовершенствована другим ткачем, Жозефом Жаккаром. Ряды отверстий (перфорация) в наборе карт использовались для хранения деталей узора. При замене карточек ткацкий станок ткал другой узор.
«Жаккардовый станок выполнит любой узор, который в состоянии представить себе воображение», - говорил англицский математик Чарльз Бэббидж. Его настолько потрясло разнообразие, которое давали перфокарты, что в 1832 г. он начал проектировать то, что назвал «аналитической машиной», однако, в то время построить такой механизм было невозможно из-за его сложности. Но с этого началась эра электронной информации. [№3.2, стр. 99-100]
Принцип работы перфокарт весьма прост: в том месте, где в карте проделано отверстие, могут соприкасаться два электрода, и через них потечет ток. Понятно, что ток при относительно малом напряжении не сможет пробить картонную карту – сигнала не будет. Получается, что перфокарта тоже использовала двоичный код для записи информации в позиционной системе счисления – каждое отверстие или его отсутствие несут двоякую информацию – о своем местоположении и об одном из двух фактов – есть дырка или же ее нет.
§3 Память на числа.
Поразительная сила образов (или эйдосов, как их называли древние греки) была известна человечеству с древнейших времен. В настоящее время эйдетизм рассматривается как разновидность образной памяти, выраженной в сохранении ярких, наглядных образов предметов. Обладающий эйдетизмом человек не воспроизводит в памяти воспринимавшиеся им предметы, а продолжает как бы видеть их.
У разных лиц бывает и различная память по отношению к числам, годам, ценам; различие это зависит от неодинаковой степени развития математических способностей. Лицо, широко развившее эти способности, будет неизменно сохранять ясное и прямое впечатление о числах и обо всем, связанном с ними, тогда как лицо со слабо развитыми способностями найдет затруднительным помнить что-либо подобное, даже усиленно занимаясь умственными вычислениями, но последние, однако, могут развить эту способность. [№6, В.В.Аткинсон]