Реферат: Химическая термодинамика

где A — работа, полученная за счет перехода теплоты от тела с вы­сокой температурой (Т 1 ) к телу с низкой температурой (Т 2 );Q 1 — теплота, взятая у нагретого тела с температуройТ 1 ;Q 2 — теплота, отданная холодному телу с температуройТ 2 .

Учитывая, что температура выражена в абсолютной шкале, мы видим, что КПД тепловых машин вообще невелик. Например, КПД теплоэлектроцентрали, работающей с перегревом пара до 673 Кис конденсатором при Т 2 =323 К

или 52%

(И это без учета всех остальных потерь в рабочем цикле турбин и механических потерь!)

Таким образом, для любых процессов, протекающих под дей­ствием разности потенциалов (grad P ), каковой для тепловых про­цессов является разность температур, для элект­рических — разность потенциалов, для механи­ческих — разность высот и т.д., общим является сравнительно низкий коэффициент полезного действия. Значение КПД обращается в единицу, если в уравнении (12) Т 2 0, но абсолютный нуль недостижим. Следовательно, всю энергию нагретого тела при температуре Т 1 , в работу превратить нельзя.

Заряд q проходит разность потенциалов, со­вершая работу

A=q(U1 -U2 ). (13)

Однако всю энергию он отдает только в том слу­чае, если U2 →O.

Вода вращает турбину при перепаде уровней воды: верхний бьеф — нижний бьеф плотины:

(14)

Однако всю энергию положения (потенциальную) вода отдаст только в том случае, если h2 → 0, т. е. вода будет падать до центра земли, что невозможно.

Таким образом, при совершении работы часть общей энергии системы остается неиспользованной.

При течении химических реакций энтальпия начальных продук­тов не может вся перейти в работу или теплоту, так как в конеч­ных продуктах реакции сумма энтальпий не равна нулю. Если гра­диент движущих сил (Т, U , h и т. д.) равен нулю, то и работа, со­вершающаяся в процессе, равна нулю, а система будет находиться в состоянии равновесия: при Т1 =Т 2 закончится теплообмен: элек­трический заряд не осуществляет работы, если U1 = U2 турбины не работают при спущенной плотине; химическая реакция будет достигать равновесия, когда количество полученных конечных про­дуктов равно количеству разложившихся конечных продуктов на первоначальные за единицу времени.

Исследуя выражение для КПД тепловой машины, Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией . В самом деле:

или

отсюда

или (15)

Таким образом, при проведении цикла в идеальной тепловой машине (цикл Карно) и получении механической работы отношение полученной теплоты к температуре нагретого источника равно та­кому же отношению для холодного источника. Так как Q является в уравнении (15) приращением энергии, то можно это отношение записать в дифференциальной форме для элементарных циклов:

суммируя изменения по всему циклу тепловой машины, можно за­писать

(16)

где dQ — приращение теплоты; Т — соответствующая температура;— интеграл по замкнутому контуру.

Подынтегральное выражение Клаузиус принял за приращение новой функции S — энтропии:

или (17)

Энтропия представляет собой функцию параметров состояния (р, v, Т ) и может оценить направление процесса в системе, стре­мящейся к равновесию, так как для идеального или равновесного процесса ее изменение равно нулю:dS =0.

В самом деле, заменяя dQ на изменение внутренней энергии и работыdQ=dU+pdv , можно записать

(18)

ЕслиU=const и v = const , то в идеальном процессеdS=0 , что, по существу, определяет равновесие системы (обратимый процесс), и в этом случае энтропия стремится к максимальному значению:

S→Smax .

Приращение энтропии определяется развитием необратимых процессов, протекающих самопроизвольно, которые прекращаются только при достижении равновесия в системе.

Однако требование постоянства внутренней энергии системы ис­ключает возможность использования только одной этой функции для исследования химических реакций, при которых внутренняя энергия веществ, составляющих систему, неизбежно меняется.

Гиббспредложил другую термодинамическую функцию, иссле­дуя которую можно определить направление процессов в системе, стремящейся к равновесию приT=const иp=const :

G=H ¾ TS (19)

гдеG — энергия Гиббса (или термодинамический потенциал, как назвал эту функцию Гиббс); Н —энтальпия; S —энтропия; Т — абсолютная температура.

Опуская все математические исследования термодинамической функцииG , можно считать, что функция G для системы, стремя­щейся к равновесию, убывает, при достижении равновесия она при­нимает минимальное значение (G→Gmin ), а ее приращение обра­щается в нуль (ΔG=0 ).

ЭНТРОПИЯ

Наиболее информативной термодинамической функцией в уравне­нии (19) является энтропияS .

Значение энтропии легко определить только для состояния иде­ального газа. Используем для вычисления S уравнение (18), где dU — изменение внутренней энергии, равное для идеального газа С v dT т.е. теплоемкости при постоянном объеме, умноженной на приращение температуры:pdv — приращение работы, которое можно представить как, заменив р наRT/v . Отсюда

(20)

После интегрирования в пределах 0 ¾ T получаем

(21)

рис. 2 Схема для расчета энтропии при самопроизвольном смешивании двух газов.

К-во Просмотров: 544
Бесплатно скачать Реферат: Химическая термодинамика