Реферат: Кинематика материальной точки
Здесь – совокупность ортов, задающих направления. Она называется базисом системы отсчёта.
– совокупность координат радиус-вектора в этом базисе. Т.к. вектор по трём избранным направлениям раскладывается однозначно, то однозначно и определение координат точки пространства.
Рассмотрим операцию скалярного умножения двух векторов и
(например, радиус-векторов точек пространства А и В ):
=
Всего девять слагаемых. Т.к. , то сумма диагональных элементов совсем проста:
. Все остальные (перекрёстные члены) кроме произведения координат содержат множители типа
.
Выражение скалярного произведения можно существенно упростить, если выбрать углы
. В этом случае говорят, что базис системы координат ортогональный. Только в ортогональном базисе
,
т.к. и все перекрёстные члены равны 0. Именно в силу простоты записи скалярного произведения ортогональный базис является предпочтительным.
Впервые ортогональную систему координат (СК) ввёл Р. Декарт, и она называется декартовой. Только в декартовой СК
· координаты вектора являются его проекциями на соответствующую ось:
;
докажем это для первой координаты:
· координаты вектора связаны с его модулем соотношением Пифагора:
,
т.к. в соответствие с выражением скалярного произведения в декартовой системе.
Существуют традиционные обозначения декартовой СК.
Ось | Обозначение координаты | Обозначение орта |
1 | r 1 = х | ![]() |
2 | r 2 = у | ![]() |
3 | r 3 =z | ![]() |
Таким образом, разложение радиус-вектора в декартовой СК будет иметь вид:
.
Векторную функцию движения можно заменить тремя скалярными зависимостями, которые называются законами движения: x(t), y(t), z(t).Законы движения содержат всю информацию о движении. Т.е. если известны законы движения, то можно ответить на любой вопрос, касающийся движения материальной точки.
· Скорость.
Таким образом, проекции вектора скорости равны производным соответствующих законов движения.
· Ускорение.
.
Таким образом, проекции вектора ускорения равны вторым производным законов движения.
А как найти касательное и нормальное ускорения? Они являются результатом разложения вектора полного ускорения по направлениям касательной и нормали:
.