Реферат: Количественные методы в управлении
Для решения полученной задачи в каждое неравенство добавим неотрицательную переменную. После этого неравенства превратятся в равенства, в силу этого добавляемые переменные называются балансовыми. Получается задача ЛП на максимум, все переменные неотрицательны, все ограничения есть равенства, и есть базисный набор переменных: x5 - в 1-м равенстве, x6 - во 2-м и x7 - в 3-м.
P(x1,x2,x3,x4)=48*x1+30*x2+29*x3+10*x4+ 0*x5+ 0*x6+ 0*x7 -->max
3*x1+ 2*x2+ 4*x3+ 3*x4+ x5 =198
2*x1+ 3*x2+ 1*x3+ 2*x4 + x6 = 96
6*x1+ 5*x2+ 1*x3+ 0*x4 + x7=228
x1,x2,x3,x4,x5,x6,x7>=0
48 | 30 | 29 | 10 | 0 | 0 | 0 | Hi /qis | |||||||||||
С | Б | Н | Х1 | Х2 | Х3 | Х4 | Х5 | Х6 | Х7 | |||||||||
0 | Х5 | 198 | 3 | 2 | 4 | 3 | 1 | 0 | 0 | 66 | ||||||||
0 | Х6 | 96 | 2 | 3 | 1 | 2 | 0 | 1 | 0 | 48 | ||||||||
0 | Х7 | 228 | 6 | 5 | 1 | 0 | 0 | 0 | 1 | 38 | ||||||||
Р | 0 | -48 | -30 | -29 | -10 | 0 | 0 | 0 | ||||||||||
0 | Х5 | 84 | 0 | -0.5 | 3.5 | 3 | 1 | 0 | -0.5 | 24 | ||||||||
0 | Х6 | 20 | 0 | 1.33 | 0.67 | 2 | 0 | 1 | -0.33 | 30 | ||||||||
48 | Х1 | 38 | 1 | 0.83 | 0.17 | 0 | 0 | 0 | 0.17 | 228 | ||||||||
Р | 1824 | 0 | 10 | -21 | -10 | 0 | 0 | 8 | ||||||||||
29 | Х3 | 24 | 0 | -0.14 | 1 | 0.86 | 0.29 | 0 | -0.14 | |||||||||
0 | Х6 | 20 | 0 | 1.43 | 0 | 1.43 | -0.19 | 1 | -0.24 | |||||||||
48 | Х1 | 34 | 1 | 0.86 | 0 | -0.14 | -0.05 | 0 | 0.19 | |||||||||
Р | 2328 | 0 | 7 | 0 | 8 | 6 | 0 | 5 |
Так как все оценочные коэффициенты неотрицательны, то получено оптимальное решение. Оптимальное решение: x1=34, x2=0, x3=24, x4=0, x5=0, x6=20, x7=0. Максимум целевой функции Pmax = 2328.
Ресурсы 1 и 3 являются «узким местом» производства, так как при выполнении оптимального плана они используются полностью (без остатка).
1.2 Двойственная задача линейного программирования.
исходная задача двойственная задача
CX-->max YB-->min
AX<=B, X>=0 YA>=C, Y>=0
P= 48*x1+30*x2+29*x3+10*x4 -->max S= 198*y1+96*y2+228*y3 -->min
3*x1+2*x2+4*x3+3*x4<=198 3*y1+2*y2+6*y3>=48
2*x1+3*x2+1*x3+2*x4<=96 2*y1+3*y2+5*y3>=30
6*x1+5*x2+1*x3+0*x4<=228 4*y1+1*y2+1*y3>=29
x1,x2,x3,x4>=0 3*y1+2*y2+0*y3>=10
y1,y2,y3>=0
Первый способ:
По первой теореме двойственности, оптимальные решения двойственной задачи (y1,y2,y3) равны оценочным коэффициентам при балансовых переменных последней симплекс-таблицы: у1=6, у2=0, у3=5. А экстремум двойственной задачи Smin =2328.
Второй способ:
По второй теореме двойственности, если какая-то компонента оптимального решения исходной задачи отлична от нуля, то соответствующее ей ограничение двойственной задачи на ее оптимальном решении выполняется как строгое равенство. А если какое-то из ограничений исходной задачи на ее оптимальном решении выполняется как строгое неравенство, то соответствующая компонента оптимального решения двойственной задачи обязательно равна нулю.
Так как балансовая переменная второго ограничения (х6) отлична от нуля, следовательно оно выполняется на оптимальном решении как строгое неравенство, а поэтому у2=0. Так как х1 и х3 отличны от нуля, то получаем следующую систему уравнений: 3*у1 +6*у3 = 48
4*у1 + у3 = 29
Решая их, получаем оптимальные решения двойственной задачи: у1=6, у2=0, у3=5.
1.3 Задача о комплектном плане.
Имеем соотношения: x3:x1= 1; x4:x2=3 или х3=х1; х4=3*х2. Подставив эти выражения, получим задачу ЛП с двумя переменными.
77*х1 +60*х2 -max
7*х1 +11*х2 ≤ 198
3*х1 + 9*х2 ≤ 96
7*х1 +5*х2 ≤ 228