Реферат: Количественные методы в управлении
Где p*[j] – вероятности после проведения пробной операции. М*(Q[i]), М*(R[i]) – средний ожидаемый доход и риск после проведения пробной операции.
Максимально оправданная стоимость пробной операции равна М*(Q[i]) - М(Q[i])=11 – 6 = 5.
Теперь выберем какие-нибудь две операции (1-ю и 4-ю), предположим, что они независимы друг от друга и найдем операцию, являющуюся их линейной комбинацией и более хорошую, чем какая-либо из имеющихся.
1-я операция = (4,2); 4-я операция = (0,6)
Результат: нельзя подобрать такой операции, являющейся линейной комбинацией 1-ой и 4-ой операции, которая бы доминировала все имеющиеся операции.
Пусть взвешивающая формула f(Q)=М[Q]/M[R], при M[R] не равным нулю, тогда для 1- 4 операций f1 =0,5; f2 =2; f3 =2; f4 = ¥. Следовательно 4-я операция является самой лучшей (max=¥), а 1-я – самая худшая.
2.2 Анализ доходности и рискованности финансовых операций.
Пусть доход от операции Q есть с.в., которую будем обозначать также как и саму операцию Q. Математическое ожидание M[Q]=S(q[i]*p[i]) называют еще средним ожидаемым доходом, а риск операции r = s=ÖD[Q]=Ö(M[Q2 ]-M2 [Q]) отождествляют со средним квадратическим отклонением.
номер операции | Доходы (Q) и их вероятности (Р) | M[Q] | r | |||
1 | 0 | 1 | 5 | 14 | 4,2 | 5,19 |
1/5 | 2/5 | 1/5 | 1/5 | |||
2 | 2 | 4 | 6 | 18 | 6,8 | 5,74 |
1/5 | 2/5 | 1/5 | 1/5 | |||
3 | 0 | 8 | 16 | 20 | 8 | 8,72 |
1/2 | 1/8 | 1/8 | 1/4 | |||
4 | 2 | 12 | 18 | 22 | 16,25 | 6,12 |
1/8 | 1/8 | 1/2 | 1/4 |
Необходимые расчеты:
Красным цветом высвечены доминируемые точки (операции), а зеленым – недоминируемые, т.е. оптимальные по Парето. Оптимальными по Парето являются 1-я,2-я и 4-я операции.
Теперь выберем две операции (1-ю: Q1 и 4-ю: Q4 ), предположим, что они независимы друг от друга и выясним, нет ли операции, являющейся их линейной комбинацией и более хорошей, чем какая-либо из имеющихся.
Пусть Q1 и Q4 две финансовые операции со средним ожидаемым доходом 4,2 и 16,25 и рисками 5,19 и 6,12 соответственно. Пусть t - какое-нибудь число между 0 и 1 . Тогда операция Qt=(1-t)Q1 +tQ4 называется линейной комбинацией операций Q1 ,Q4 . Средний ожидаемый доход операции Qt равен M[Qt] = 4,2* (1-t) + 16,25*t, а риск операции Qt равен rt =Ö(26,94*(1-t)2 +37,44*t2 ). Была найдена операция Q*, являющаяся линейной комбинацией исходных операций, со средним ожидаемым доходом 9,14 и риском 3,96, которая превосходит все имеющиеся операции по риску.
Определить лучшую и худшую операции можно также с помощью взвешивающей формулы f(Q)= 2*M[Q] – r. Имеем: f(Q1 )=3,21; f(Q2 )=7,86; f(Q3 )=7,28; f(Q4 )=26,38. Следовательно, 4-я операция является самой лучшей, а 1-я – самой худшей.
2.3 Статистический анализ денежных потоков.
Исходные данные для анализа: ежедневные (суммарные) денежные вклады населения в отделение сбербанка в течение 4-х недель (или аналогичный какой-нибудь денежный поток).
Исходные данные:
1-я неделя | 2-я неделя | 3-я неделя | 4-я неделя | ||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 5 | 13 | 15 | 14 | 13 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 3 | 1 | 17 | 19 | 5 | 4 |
Денежный поток:
6 | 5 | 13 | 15 | 14 | 13 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 3 | 1 | 17 | 19 | 5 | 4 |
Ранжированный ряд:
1 | 3 | 4 | 5 | 5 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 14 | 15 | 17 | 19 |
Дискретный вариационный ряд:
значения | 1 | 3 | 4 | 5 | 6 | 9 | 12 | 13 | 14 | 15 | 17 | 19 |
частоты | 1 | 1 | 1 | 2 | 1 | 6 | 6 | 2 | 1 | 1 | 1 | 1 |
частости | 1/24 | 1/24 | 1/24 | 2/24 | 1/24 | 6/24 | 6/24 | 2/24 | 1/24 | 1/24 | 1/24 | 1/24 |
Многоугольник частот:
Интервальный вариационный ряд:
Границы интервалов | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |||||||||||||
Середины интервалов | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | ||||||||||||||
Частоты | 1 | 1 | 3 | 1 | 6 | 0 | 8 | 2 | 1 | 1 | ||||||||||||||
Частости | 1/24 | 1/24 | 3/24 | 1/24 | 6/24 | 1/24 | 8/24 | 2/24 | 1/24 | 1/24 |
Многоугольник частостей:
Выборочная функция распределения:
Статистические характеристики:
По исходному ряду | По дискретному ряду | По интервальному ряду | |
Выборочная средняя | 10,4 | 10,4 | 10,42 |
Выборочная дисперсия | 18,79 | 18,79 | 19,88 |
Выборочное СКО | 4,33 | 4,33 | 4,46 |
Несмещенная оценка ген. диспер. | 19,61 | 19,61 | 20,75 |
Необходимые формулы и расчеты:
2.4 Задача формирования оптимального портфеля ценных бумаг.
3. Модели сотрудничества и конкуренции.
3.1 Сотрудничество и конкуренция двух фирм на рынке одного товара.
Рассмотрим две фирмы, i=1,2, выпускающие один и тот же товар. Пусть затраты i-й фирмы при выпуске x[i] равны a[i]*x[i] (таким образом, a[i] есть себестоимость выпуска одной единицы товара i-й фирмой). Произведенный обеими фирмами товар поступает на общий рынок. Цена на товар линейно падает в зависимости от поступающего на рынок общего его количества: p(x)=c-bx, c,b>0, где x=x[1]+x[2]. Следовательно, прибыль i-ой фирмы равна W[i](x[1],x[2])=x[i]*(c-bx)-a[i]*x[i]=bx[i]*(d[i]-(x[1]+x[2])),где d[i]=(с-a[i])/b. Поведение каждой фирмы определяется ее стремлением максимизировать свою прибыль.
Дано: a[1]=5, a[2]=6, b=9, c=77.
Тогда: p(x)=77-9*x d[1]=(с-a[1])/b=(77-5)/9=8 d[2]=(с-a[2])/b=(77-6)/9=7,89
W[1](x[1],x[2])= bx[1]*(d[1]-(x[1]+x[2]))= 9*x[1]*(8-(x[1]+x[2]))