Реферат: Комплексні числа

Доведемо, що для будь – яких комплексних чисел z₁= a + bί і z₂ = c + dί різниця z₁- z₂ визначена і до того ж однозначно. Доведемо, що існує, і до того ж єдине, комплексне число z₃= x+yί, яке в сумі з z₂ дає z₁.

За означенням дії віднімання, (c + dί) + (x+yί) = a + bί. виконавши додавання в лівій частині рівності, дістанемо:

(c + x) + (d + y)ί = a + bί (1).

З умови рівності двох комплексних чисел маємо:

c + x = a

d + y = b

Ця система має розвиток, і до того ж єдиний: x = a - c, y = b – d. Отже, існує , і до того ж єдина, пара дійсних чисел (x, y), яка задовільняє рівняння (1), що і треба було довести. З доведеного випливає, що віднімання комплексних чисел виконують за таким правилом:


(a + bί) – (c + dί) = (a - c) + (b – d)ί

Приклади: Виконати віднімання комплексних чисел.

1) (3+4ί) – (1+2ί) = (3-1) + (4-2)ί = 2 + 2ί;

2) (-5+2ί) – (2+ί) = (-5-2) + (2-1)ί = -7+ί;

3) (6+7ί) – (6-5ί) = (6-6) + (7+5)ί = 12ί;

4) (0,3+2,5ί) – (-0,75+1,5ί) = (0,3+0,75ί) + (2,5-1,5ί) = 1,05+ί;

5) (Ö2-2ί) – (Ö2+3ί) = (Ö2-Ö2) + (-2-3)ί = -5ί;

6) 1+1/2) – (1/4-3/5) = (1/3-1/4) + (1/2+3/5) = 1/12 + 11/10.

в) Множення комплексних чисел

Означення. Добутком двох комплексних чисел a + bί і c + dί називається комплексне число (ac - bd) + (ad + bc)ί . Суть і доцільність цьго означення стане зрозумілою, якщо взяти до уваги, що цей добуток утворений так, як виконується множення двочленів з дійсними коефіцієнтами, а саме (a + bί)( c + dί) = ac + adί + bcί + bdί² = ac + (ad + bc)ί + bdί². Замінюючи, за означенням, ί²на –1, дістанемо: bdί² = -bd . Відокремивши дійсну частину від уявної, остаточно матимемо:

(a + bί)( c + dί) = (ac - bd) + (ad + bc)ί (2)

Формулу (2) не слід намагатися механічно запам’ятати. Під час множення комплексних чисел треба користуватись відомим правилом множення двочленів a + bί і c + dί з наступною заміною ί²на –1.

Приклади: Виконити множення комплексних чисел.

1) (4-5ί)(3+2ί) = 12+8ί -15ί -10ί²= 12+10-7ί =22-7ί;

2)(Ö3-ί)(Ö2+Ö5ί) = Ö6-Ö2ί+Ö15ί-Ö5 ί²= (Ö6+Ö5) + (Ö15-Ö2)ί;

3)8ίх3ίхÖ3 = -24Ö3;

4)(2-ί)(-5) = -10+5ί;

5)(-4-3ί)(-6ί) = -18+24ί.

Дія множення комплексних чисел підлягає основним законам множення, встановленим для дійсних чисел: переставному і сполучному.

Знайдемо добуток двох спряжених комплексних чисел. Маємо: (a + bί)( a - bί) = a² - (bί)² = a² -b²ί² = a² + b², тобто (a + bί)( a - bί) = a² + b².

Приклади: Обчислити добуток.

1) (3+5ί)(3-5ί) = 9+25 = 34;

К-во Просмотров: 519
Бесплатно скачать Реферат: Комплексні числа