Реферат: Комплексні числа

Малюнок 3

На малюнку 3 зображено дві пари протилежних векторів OA i OC, OB i OD, що відповідають парам протилежних чисел 3+4ί та –3-4ί; -2+3ί та 2-3ί.

Геометричне зображення суми і різниці двох комплексних чисел.

З геометричної інтерпретації комплексних чисел у вигляді векторів випливає можливість геометричного зображення додавання комплексних чисел. Воно знаходиться до знаходження сум двох векторів за відомим правилом паралелограма.

Нехай дано два комплексних числа z₁ = a₁ + b₁ί та z₂ = a₂ + b₂ί, яким відповідають радіус – вектори ОА і ОА (малюнок 4). Побудуємо на цих векторах як на сторонах паралелограм. Тоді зображенням суми комплексних чисел z₁ і z₂ буде вектор ОВ (діагональ паралелограма) справді, при додаванні векторів їх відповідні координати додають. Тому, якщо вектор ОА₁ має координати (a₁;b₁), а вектор ОА₂ (а₂;b₂), то їх сума – вектор ОВ – матике координати (а₁+а₂;b₁+b₂). Вектор ОВ відповідає комплексному числу (а₁+а₂) + (b₁+b₂), яке є сумою чисел z₁ і z₂.


Малюнок 4

Нехай, наприклад, треба знайти геометричне зображення різниці z₁ - z₂ комплексних чисел z₁ = 2+3ί та z₂ = -3+2ί. Будуємо вектор ОА, що є зображенням числа z₁, і додаємо до нього вектор ОВ, який зображує число z₂ = -3+2ί, протилежне від’ємнику (малюнок 5). Шукану різницю зображують вектором ОС, що є сумою векторів ОА і ОВ. Йому відповідає комплексне число 5+ί.

Малюнок 5

4. Тригонометрична форма запису комплексних чисел

Запис числа z у вигляді a + bί називається алгебраїчною формою запису комплексного числа. Крім алгебраїчної форми використовують й інші форми запису комплексних чисел – тригонометрична і показникова. Розглянемо тригонометричну форму запису, а для цього введемо поняття про модуль і аргумент комплексного числа.

а) Модуль комплексного числа.

Побудуємо радіус – вектор ОА, що є геометричним образом комплексного числа z = a + bί (малюнок 6).

Модулем комплексного числа z = a + bί називається значення Öa² + b². Число r =Ö a² + b² перетворюється на нуль тільки за умов a =0, b =0.

Модуль комплексного числа a + bί позначається символом a + bί. Отже, a + bί = Ö a² + b².

Якщокомплекснічисламаютьодинітойсамиймодуль, токінцівекторів, якізображуютьцічисла, лежатьнаколізцентромупочаткукоординатірадіусом, щодорівнюєїхмодулю.

Приклади: знайти модулі даних комплексних чисел.

1) 5+7ί = Ö25+49 = Ö74;

2) –2-3ί = Ö4+9 = Ö13;

3) 8+0ί=Ö64 = 8;

4) 5ί= 5.

Б) аргумент комплесного числа.

Нехай радіус – вектор ОА зображує комплексне число z = a + bί (дивіться малюнок 6). Позначимо α кут, який утворює вектор ОА з додатним напрямом осі х. Числове значення кута α, виміряного в радіанах, називається аргументом комплексного числа a + bί. Якщо комплексне число дорівнює нулю, то вектор ОА перетворюється в точку (нуль – вектор), і говорити про його напрям немає сенсу. Тому вважають, що число нуль не має аргументу. Кожне відмінне від нуля комплексне число має нескінченну множину значень аргументу, які відрізняються один від одного на ціле число повних обертів, тобто на величину 2πn, де n – довільне ціле число. Значення аргументу, взяте в межах першого кола, тобто від 0 до 2π, називається головним. Головне значення аргументу комплексного числа можна визначити з рівності tg α = b/a. Справді, за знаками a i b можна встановити, в якій четверті міститься кут α, і за величиною tg α, використовуючи таблиці, знайти величину кута α.

Приклади: знайти головне значення аргументу даних комплексних чисел.

1) z = 1+ί;

Маємо: tg α = 1. Оскільки a = 1 та b = 1, радіус – вектор, який відповідає даному комплексному числу, належить І чверті і тому α - гострий кут. Отже, = π/4.

К-во Просмотров: 518
Бесплатно скачать Реферат: Комплексні числа