Реферат: Комплексні числа
За означенням, ί¹ = ί, ί²= - 1.
Користуючись рівністю ί²= - 1, визначеко кілька послідовних ступенів уявної одиниці:
ί³ =ί²ί= - 1ί= -ί; ί = ί³ί = -ίί= 1; ί=ίί=ί; ί=ίί=-1; ί=ίί=-ί; ί=-ίί=1.
Оскільки ί=1, то значення степенів періодично повторюються із збільшенням показника на 4. Так, ί²= ί =-1, ί³=ί =-ί, ί =ί = 1і так далі.
Означення. Щоб піднести число до степеня з натуральним показником n, треба показник сепеня поділити на 4 і піднести до степеня, показник якого дорівнює остачі від ділення.
Приклади. Піднести до степеня:
а) ί = ί =ί = ίί =-ί ;
б) ί = ί = ί = ί²= -1;
в) ί =ί = ί = -ί.
Правила піднесення до степеня уявної одиниці застосовується при піднесенні до степеня комплексних чисел.
Приклади. Піднести до степеня двочлени:
1) (2+5ί)² = 4+20ί +25ί² = -21+20ί;
2) (3+2)³ = 27+54ί +36ί²+8 = -9+36ί;
3) (1+ί)² = 1+2ί + ί²= 2ί;
4) (1-ί) ² = 1-2ί + ί²= -2ί;
5) (1-ί) = (1-2ί +ί) ² = (-2ί) ² = 4ί² = -4;
6) (1+ί) = ((1+ί)²)³ = (2ί) ³ = 8ί³ = -8 ί;
7) (1-ί) = ((1-ί) ²) = (-2ί) = -32ί = -32ί.
Рівності(1+ί)² = 1+2ί + ί²= 2ί, (1-ί) ² = 1-2ί + ί²= -2ί корисно запам’ятати, бо їх часто використовують.
3. Геометрична інтерпретація комплексних чисел
Вивчаючи комплексні числа, можна використовувати геометричну термінологію і геометричні міркування, яякщо встановити взаємно однозначну відповідність між множиною комплексних чисел і множиною точок координатної площини. Цю відповідність можна встановити так. Кожному комплексному числу a + bί поставимо у відповідність точку М(a;b) координатної площини, тобто точку, абсциса якої дорівнює дійсній частині комплексного числа, а ордината – коефіцієнту уявной частини. Кожній точці М(a;b) координатної площини поставимо у відповідність комплексне число (малюнок 1).
Малюнок 1
Очевидно, що така відповідність є взаємно однозначною. Вона дає можливість інтерпретувати комплексні числа як точки деякої площини, на якій вібрано систему координат. Координатну площину називають при цьому комплексною, вісь абсцис – дійсною віссю, бо на ній розміщені точки, що відповідають комплексним числам a + 0ί, тобто відповідають дійсним числам. Вісь ординат називають уявною віссю – на ній лежать точки, які відповідають уявним комплексним числам 0+ bί.
Зручною є також інтерпритація комплексного числа як вектора ОМ (дивіться малюнок 2)
Малюнок 2
Поставимо у відповідність кожному комплексному числу вектор з початком у точці О(0;0) і кінцем у точці М(a;b). Ви знаєте, що такий вектор називають радіус – вектором, а його проекції на осі є координатами вектора. Отже, можна сказати, що геометрични зображенням комплексного числа z = a + bί є радіус – вектор з координатами a і b. Відповідність між множиною комплексних чисел, з одного боку, і множиною точок або векторів площини, з іншого, дає змогу комплексні числа називати векторами аьо точками і говорити, наприклад, про вектор a + bί або про точку a + bί.
На малюнку 2 вектори ОА, OB, OC, OD є відповідними геометричними зображеннями комплексних чисел z₁= 2+2ί; z ₂= -3+4ί; z ₃= -4-3ί; z ₄= 4-2ί.