Реферат: Комплексні числа
3) (4+Ö3ί)(4-Ö3ί) = 16+3 = 19;
4) (Öх+Öуί)( Öх-Öуί) = х+у;
5) (3/4+2/5ί)(3/4-2/5ί) = 9/16+4/25 = 289/400.
Читаючи рівність (a + bί)( a - bί) = a² + b² справа наліво, робимо висновок, що сумму квадратів будь – яких двох чисел можна подати у вигляді добутку комплексно – спряжених множників.
Приклади: Розкласти на множники двочлени.
1) а+9 = (а+3ί)(а-3ί);
2) 16m²+25n² = (4m+5nί)(4m-5nί);
3) 49+36 = (7+6ί)(7-6ί);
4) а+16 = (Öа+4ί)( Öа-4ί);
5) в+7 = (Öв+Ö7ί)( Öв-Ö7ί).
г) Ділення комплексних чисел.
Ділення комплексних чисел означають як дію, обернену до дії множення, коли за даним добутком і одним з множників знаходять другий, невідомий множник. Причому в множині комплексних чисел залишається вимога, щоб дільник був відмінним від нуля.
Означення. Часткою комплексних чисел z₁ = a + bί та z₂ = c + dί називеється таке комплексне число z₃= x+yί, яке при множенні на z₂ дає z₁.
Можливість ділення комплексних чисел і його однозначність потребує доведення.
Доведемо, що частка комплексних чисел z₁ = a + bί та z₂ = c + dί визначена і до того ж однозначно, якщо c + dί≠ 0+0ί. Отже, доведемо, що за умови існує, і до того ж єдине, комплексне число z₃= x+yί, яке при множенні на z₂ дає z₁. За означенням дії ділення, (c + dί)( x+yί) = a + bί. Виконавши в лівій частині цієї рівності дію множення, дістанемо: (c x - dy) + (cy +d x)ί = a + bί.
З умови рівності двох комплексних чисел випливає:
c x - dy= a
cy +d x=b
Система має єдиний розв’язок:
x= (a c +bd)\( c²+d²);
y = (bc- ad)\( c²+d²).
Із доведення випливає, що ділення ккомплексних чисел відбувається за таким правилом:
(a + bί)\( c + dί) = (a c +bd)\( c²+d²) + (bc- ad)ί\( c²+d²).
Цей результат можна дістати, помноживши ділене і дільник на число, спряжене до дільника. Покажемоце:
(a + bί)\( c + dί) = (a + bί)( c - dί)\( c + dί)( c - dί) = ((a c +bd) + (bc- ad)ί )\( c²+d²) = (a c +bd)\( c²+d² ) + ((bc- ad)ί)\( c²+d²).
Цим принципом користуються під час розв’язування вправ на ділення комплексних чисел.
Приклади. Знайти частку комплексних чисел.
а) (2+5ί)/(3-2ί) = (2+5ί)(3+2ί)/(3-2ί)(3+2ί) = (-4+19ί)/13 = -4/13+19ί/13;
б) (3+ί)/ί = (3+ί)(-ί)/ί = 1-3ί;