Реферат: Корреляция и непараметрические критерии различия в педагогических исследованиях

Чтобы рассчитать коэффициент ранговой корреляции, необходимо:

расположить количественные значения причинного фактора в убывающем (возрастающем) порядке; например, для установления влияния уровня физической работоспособности лыжников (причинный фактор), выявленного при помощи дозированной нагрузки на велоэргометре, на результат в гонке на 15 км (следственный фактор) уровень физической работоспособности ранжировался (Г.И. Мызан, 1974) в убывающем порядке (колонка "А");

параллельно первому ряду записать соответствующие значения следственного фактора, в данном случае - результат в гонке на 15 км (колонка "Б"); порядок значений этого фактора будет подчинен порядку значений причинного фактора, а поэтому может не подчиняться принципу возрастания или убывания;

ФР170 , кГм/мин/кг Результат гонки, мин Ранги Разность рангов Квадрат разности рангов
ФР170 результат
А Б а б d = а - б d 2
24,8 63 1 2 -1 1
24,2 61 2 1 +1 1
24,0 72 3 5 -2 4
20,4 71 4 4 0 0
20,1 70 5 3 +2 4
19,0 82 6 10 -4 16
17,5 77 7 7 0 0
17,2 75 8 6 +2 4
16,8 79 9 8 +1 1
16,3 81 10 9 +1 1
n = 10

обозначить цифрами порядковые места значений причинного фактора (колонка "а"); естественно, что раззначения этого фактора расположены в убывающем порядке, то цифры порядковых мест будут расположены в возрастающем порядке; если количественные показатели того или иного фактора оказываются одинаковыми, то их порядковые места обозначаются тем числом, которое составляет среднюю арифметическую величину их порядковых мест;

обозначить цифрами порядковые места значений следственного фактора (колонка "б");

подсчитать число коррелируемых парных значений (n ); в данном примере их 10;

вычислить разность рангов (d = а - б) с сохранением соответствующего знака; в данном примере: 1 - 2 = - 1 и т.д.;

вычислить квадрат разности рангов (d2 ); в данном примере: - 12 = 1 и т.д.;

вычислить сумму квадратов разности рангов (Sd2 ); в данном примере она равна 32;

вычислить коэффициент корреляции рангов ρ по формуле:

произвести оценку вычисленного коэффициента, т.е. установить, во-первых, существует ли статистически достоверное различие между полученным значением коэффициента и нулем; во-вторых, проявятся ли выявленные связи (или их отсутствие), если коэффициент корреляции будет рассчитываться по тем же самым признакам, но на других группах исследуемых или на тех же самых группах, но в других условиях; значимость коэффициента корреляции рангов определяется двумя путями:

а) путем сравнения с принятыми уровнями меры количественной связи; в данном примере величина коэффициента корреляции, равная 0,807, говорит о сильной мере количественной связи;

Критические значения коэффициентов корреляции рангов Спирмена (ρ)

Число

коррелируемых

пар, n

Уровень

значимости, P

0,05 0,01
4 1,000 -
5 0,900 1,000
6 0,329 0,943
7 0,714 0,893
8 0,643 0,833
9 0,600 0,783
10 0,564 0,746
12 0,506 0,712
14 0,456 0,645
16 0,452 0,601
18 0,399 0,564
20 0,377 0,534
22 0,359 0,508
24 0,343 0,485
26 0,329 0,465
28 0,317 0,448
30 0,306 0,432

б) по таблице достоверности коэффициента корреляции; определенный коэффициент, равный 0,807, может быть признан значимым в том случае, если его величина будет превышать табличное значение для 10 парных наблюдений; по таблице для 10 пар уровень значимости (Р) равен 0,564 или 0,746, следовательно: 0,564<0,807>0,746 т.е. коэффициент превышает Р - = 0,01 и может считаться значимым с вероятностью ошибки менее 0,01.

сделать методический вывод, т.е. выяснить внутренний высчитанного коэффициента корреляции; в приведенном примере можно убежденно говорить, что среди прочих условий на результат в лыжной гонке оказывает влияние уровень физической работоспособности спортсмена.

Коэффициент корреляции r обладает более высокой степенью точности количественной характеристики связи между факторами.

Расчет коэффициента r производится по формуле:

где А и Б - коррелируемые ряды вариант dА и dБ - отклонения вариант от средних значений этих рядов (разность между каждым значением варианты ряда и средней арифметической величиной данного ряда). Точность вычисления по формуле должна быть достаточно высокой, не менее двух знаков после запятой.

Последовательность вычисления коэффициента r показана на примере результатов исследования, использованных для демонстрации расчета коэффициента ранговой корреляции.

Составить таблицу для первичных числовых операций, для чего в первых двух колонках расположить показатели уровня физической работоспособности (ФР170 ) и показатели спортивного результата в гонке на 15 км; ранжирование показателей не обязательно.

ФР170 , кГм/мин/кг Результат гонки, мин d А d Б d Б 2 d А 2 d А d Б
А Б
24,8 63 +4,8 -10 23,04 100 -48,0
20,1 70 +0,1 -3 0,01 9 -0,3
20,4 71 +0,4 -2 0,16 4 -0,8
24,0 72 +4,0 -1 16,00 1 -4,0
17,5 77 -2,5 +4 6,25 16 -10,0
16,8 79 -3,2 +6 10,24 36 -19,2
19,0 82 -1,0 +9 1,00 81 -9,0
17,2 75 -2,8 +2 7,84 4 -5,6
24,2 61 +4,2 -12 17,64 144 -48,4
16,3 81 -3,7 +8 16,69 64 -29,6

Вычислить средние арифметические величины для уровня физической работоспособности и результата гонки:

К-во Просмотров: 280
Бесплатно скачать Реферат: Корреляция и непараметрические критерии различия в педагогических исследованиях