Реферат: Корреляция и непараметрические критерии различия в педагогических исследованиях
Вычислить квадраты найденных отклонений (dА 2 и dБ 2 ). Получим: + 4,82 = 23,04; - 102 = 100.
Найти суммы квадратов отклонений:
Определить произведения отклонений (dА и dБ ). Получим: (+ 4,8) * ( - 10) = - 48.
Найти сумму произведений отклонений: SdА dБ = 174,9 » 175.
Подставить найденное значение в формулу:
Определить достоверность высчитанного коэффициента корреляции.
Установлено, что если парных факторов меньше 100, то оценку достоверности целесообразно производить по таблице критических значений коэффициента корреляции.
Критические значения коэффициента корреляции r
Число коррелируемых пар, п | Уровень значимости, Р |
Число коррелируемых пар, п | Уровень значимости, Р | ||
0,05 | 0,01 | 0,05 | 0,01 | ||
3 | 0,977 | 0,99988 | 19 | 456 | 575 |
4 | 950 | 990 | 20 | 444 | 561 |
5 | 878 | 959 | 21 | 433 | 549 |
6 | 811 | 917 | 22 | 423 | 537 |
7 | 754 | 874 | 25 | 396 | 505 |
8 | 707 | 834 | 30 | 361 | 463 |
9 | 666 | 798 | 35 | 332 | 435 |
10 | 632 | 765 | 40 | 310 | 407 |
11 | 602 | 735 | 45 | 292 | 384 |
12 | 576 | 708 | 50 | 277 | 364 |
13 | 553 | 684 | 60 | 253 | 353 |
14 | 532 | 661 | 70 | 234 | 308 |
15 | 514 | 641 | 80 | 219 | 288 |
16 | 497 | 623 | 90 | 206 | 272 |
17 | 482 | 606 | 100 | 196 | 258 |
18 | 468 | 590 |
Коэффициент корреляции признается статистически значимым с вероятностью ошибки <0,05, если r >r 05 , и с вероятностью ошибки <0,01, если r > r01 .
Табличные значения даны для двух уровней значимости: Р = 0,05 и Р = 0,01. Полученный коэффициент корреляции может считаться достоверным лишь в том случае, если его числовое значение превышает табличное значение хотя бы при уровне значимости Р = 0,05 для данного числа парных факторов. В приведенном примере для 10 парных факторов табличные значения составляют: Р 05 + = 0,623, Р01 = 0,765. Высчитанный коэффициент равен 0,837, т.е. он больше табличного значения при Р = 0,01.
Если парных факторов больше 100, оценку достоверности коэффициента целесообразно рассчитывать по формуле средней ошибки коэффициента корреляции (mr ):
Принято считать, что достоверным коэффициент корреляции может быть признан только тогда, когда он превышает свою ошибку в 3 и более раза. В некоторых случаях формула может быть использована для оценки достоверности и при небольшом числе парных факторов, В данном примере:
Полученный коэффициент корреляции превышает свою ошибку более чем в 8 раз.
Сделать методический вывод. Выявлена отрицательная корреляция: наиболее высоким показателям физической работоспособности соответствуют наименьшие показатели времени прохождения дистанции. Значит, чем более высоким уровнем физической работоспособности обладает спортсмен, тем лучше время (при прочих равных условиях) он может показать на дистанции.
Если на одном и том же материале высчитаны коэффициенты корреляции ρ и r, то необходимо провести сопоставление их значений по методу моментов Пирсона. Делается это следующим образом: определяется разница между абсолютными значениями двух коэффициентов без учета их знака.
0,837 - 0,807 = 0,030.
По В.Ю. Урбаху (1964) считается, что полученная разница не должна превышать 3%. В приведенном примере она составляет 0,025%, а поэтому находится в пределах нормы.
Коэффициент регрессии позволяет установить количественную меру изменения следственного фактора при изменении причинного фактора на одну единицу. В отличие от показателей корреляции - величин относительных, измеряющих тесноту связи между признаками в долях единицы, показатели регрессии - величины абсолютные: они характеризуют зависимость между переменными факторами по их абсолютным значениям (Г.Ф. Лакин" 1973).
Применительно к приведенному примеру вопрос в задаче на вычисление может быть сформулирован следующим образом: насколько в среднем улучшится спортивный результат в лыжной гонке при увеличении уровня физической работоспособности спортсменов на 1 кГм/мин/кг?
Чтобы получить ответ на поставленный вопрос, необходимо:
высчитать коэффициент корреляции r; оказалось, что он равен 0,837;