Реферат: Краткая методичка по логике
$c1 (g(f, c1 ))
Ø("c5 (g))
g
(g)Ú("c5 (g))
g(f(c1 , f), c2 , c2 )
Обозначениями для высказываний: p, q, r, s, t, p0 , q0 , r0 , s0 , t0 ,…
С целью удобства обозрения формул некоторые скобочные диады можно опускать, принимая соглашение о правосторонней группировке скобок для нескольких одинаковых логических знаков и соглашение об убывании силы связи в алфавитном порядке логических знаков. Пример: pÞqÞr означает (p)Þ((q)Þ(r)), а запись Ø$xpÚqÙr понимается как (Ø($x(p)))Ú((q)Ù(r)). Следует помнить, что любое высказывание с пропущенными парами скобок не является высказыванием формального языка, оно является лишь обозначением соответствующего высказывания.
Нульместные функциональные знаки называются константами. Знакосочетание "x называется квантором всеобщности по х, а $х - квантором существования по х. Начинающееся с предикатного знака высказывание называется предикатом. Высказывание называется элементарным, если оно начинается с квантора или предикатного знака. Высказывание q называется подвысказыванием или компонентой высказывания р, если q есть часть р. Элементарная компонента q высказывания р называется его пропозициональной компонентой, если q имеет хотя бы одно такое вхождение в р, которое не является вхождением в какую-нибудь другую элементарную компоненту высказывания р. Например, высказывание $c5 (gÙg)Þg имеет пять компонент: $c5 (gÙg), g, g, gÙg, $c5 (gÙg)Þg, из которых только первые три являются элементарными, первые две - пропозициональными, только g и g - предикатными.
Интерпретация формального языка. Переменная выражает, нотирует, обозначает произвольный объект из некоторого не пустого множества, которое называется денотарием или универсумом данной интерпретации и элементы которого тем самым являются денотатами или значениями переменной. n-местный функциональный знак обозначает n-местную операцию на универсуме. n-местный предикатный знак обозначает изначальную взаимосвязь между любыми n объектами универсума. Термы обозначают объекты универсума, а высказывания обозначают истину или ложь, т. е. денотатами термов являются объекты универсума, а денотатами высказываний являются истина и ложь. Задать интерпретацию формального языка значит задать ее универсум и связанные с ним значения всех нужных нам функциональных и предикатных знаков; тогда значения всех нужных термов и формул при любых значениях фигурирующих в них переменных определяются индукцией по их построению с учетом такой интерпретации логических знаков:
"xp - обобщение высказывания р по х является истинным тттк р является истинным для всех значений переменной х; синонимы: р для каждого х, р для любого х, р для всех x, р для произвольного х.
$xp - подтверждение высказывания р по х является истинным тттк р является истинным хотя бы для одного значения переменной х; синонимы: существует х т.ч. р, р для некоторого х.
Øp - отрицание высказывания р является истинным тттк р является ложным; синонимы: не р, неверно что р.
pÙq - конъюнкция высказываний р, q является истинной тттк оба ее конъюнкта р, q являются истинными; синонимы: р и q, и р и q.
pÚq - дизъюнкция высказываний p, q является ложной тттк оба ее дизъюнкта р, q являются ложными; синонимы: р или q, или р или q.
pÞq - импликация высказываний p, q является ложной тттк посылка р является истинной, а заключение q является ложным; синонимы: р только если q, если р то q, q если р, р тогда q, q когда р, для того чтобы р необходимо чтобы q, для того чтобы q достаточно чтобы р, р следовательно q, из того что р следует что q.
pÛq - эквиваленция высказываний р, q является истинной тттк ее части р, q обе являются истинными или обе являются ложными; синонимы: р если и только если q, р тогда и только тогда когда q, для того чтобы р необходимо и достаточно чтобы q, р эквивалентно q.
Замечание. Иногда высказывания записывают на смеси формального, обычного и математического языка. Все такие записи будем рассматривать как обозначения соответствующих высказываний формального языка.
Замечание. Введение обозначений для высказываний порождает двусмысленность в использовании знака равенства, поскольку сами высказывания являются некоторыми обозначениями, а именно обозначениями истины или лжи. При наличии иерархии обозначений такую двусмысленность обычно снимают соглашением о том, что равенство понимается как равенство между исходными объектами. Т. о. равенство p=q означает, что р и q имеют одинаковые истинностные значения т. е. являются равносильными.
Пример. Каждый кулик свое болото хвалит.
Универсум - множество куликов и болот
g(x) - х есть кулик
g(x) - х есть болото
g(x, у) - х хвалит у
g(x, у) - у свое для х
"c1 ((((g(c1 ))Ù(g(c2 )))Ù(g(c1 , c2 )))Þ(g(c1 , c2 )))
Пример. Сумма квадратов двух положительных чисел меньше квадрата их суммы.
Универсум - множество положительных чисел.
f(x) - квадрат числа x
f(x, y) - сумма чисел x, y