Реферат: Линейное программирование постановка задач и графическое решение
х1 0, х2 0.
Если корм 1 не используется в рационе, то х1 =0; в противном случае x1 0. Аналогично имеем х2 0. То есть должно выполняться условие неотрицательности переменных: х1 0, х2 0.
Цель данной задачи – добиться минимальных затрат на дневной рацион, поэтому общую стоимость рациона можно выразить в виде линейной функции Z = 4х1 + 6х2 (коп.)
Требуется найти такие х1 и х2 , при которых функция Z принимает минимальное. Таким образом, необходимо найти минимальное значение линейной функции Z = 4х1 + 6х2 при ограничениях
3х1 + х2 9
х1 + 2х2 8
х1 + 6х2 12
х1 0, х2 0.
Построим многоугольник решений (рис. 2.4). Для этого в системе координат х1 Ох2 на плоскости изобразим граничные прямые
3х1 + х2 = 9 (L1 )
х1 + 2х2 = 8 (L2 )
х1 + 6х2 = 12 (L3 )
х1 = 0, х2 = 0.
Взяв какую-нибудь точку, например, начало координат, установим, какую полуплоскость определяет соответствующее неравенство (эти полуплоскости на рис. 2.4 показаны стрелками). В результате получим неограниченную многоугольную область с угловыми точками А, В, С, D.
Для построения прямой 4х1 + 6х2 = 0 строим радиус-вектор N = (4;6) и через точку O проводим прямую, перпендикулярную ему. Построенную прямую Z = 0 перемещаем параллельно самой себе в направлении вектора N. Из риc. 2.4 следует, она впервые коснется многогранника решений и станет опорной по отношению к нему в угловой точе В. Если прямую перемещать дальше в направлении вектора N, то значения линейной функции на многограннике решений возрастут, значит, в точке В линейная функция Z принимает минимальное значение.
Точка В лежит на пересечении прямых L1 и L2 . Для определения ее координат решим систему уравнений
3x1 + х2 = 9
х1 + 2х2 = 8
Имеем: х1 = 2; х2 = 3. Подставляя значения х1 и х2 в линейную функцию, получаем Zmin = 4 2 + 6 3 = 26.
Таким образом, для того, чтобы обеспечить минимум затрат (26 коп. в день), необходимо дневной рацион составить из 2 кг корма 1 и 3 кг корма 2.
2.2. Обобщение графического метода решения задач линейного программирования.
Вообще, с помощью графического метода может быть ре-шена задача линейного программирования, система ограниче-ний которой содержит n неизвестных и m линейно независи-мых уравнений, если N и M связаны соотношением N – M =2.
Действительно, пусть поставлена задача линейного программирования.
Найти минимальное значение линейной функции Z= С1 х1 +С2 х2 +... +СN xN при ограничениях
a11 x1 + a22 x2 + ...+ a1N ХN = b1
(2.3) a21 x1 + a22 x2 + ...+ a2N ХN = b2
. . . . . . . . . . . . . . .
aМ1 x1 + aМ2 x2 + ...+ aМN ХN = bМ