Реферат: Лінійні різницеві рівняння із сталими коефіцієнтами Задача Коші
або
Остання тотожність можлива, коли вирази в дужках дорівнюють нулю. Це означає ,що функціїта - розв’язки рівняння 1.Згідно з цим зауваженням частинними розв’язками рівняння 1 є функції .
Ці розв’язки лінійно незалежні, оскільки
тому загальний розв’язок рівняння 1 запишеться у вигляді
3
ІІІ. Корені характеристичного рівняння дійсні і рівні: За формулою дістанемо один з розв’язків :.
Другий розв’язок шукатимемо у вигляді де невідома функція від . знайшовши та підставивши їх у рівняння 1 дістанемо:
або
Оскільки- корінь рівняння 2, тоі за теоремою Вієта, тому і звідки де довільні сталі. Поклавши(нас цікавить розв’язок ), знайдемо другий частинний розв’язок рівняння 1:
Розв’язки - лінійно незалежні, тому загальний розв’язок рівняння 1 має вигляд:
.
Приклад 1:
Розв’язати рівняння:.
Розв’язання :
Складемо характеристичне рівняння і знайдемо його корені за формулою шуканий розв’язок має вигляд:
.
Приклад 2:
Розв’язати рівняння:
Розв’язання:
Характеристичне рівняння має комплексні корені Загальний розв’язок дістанемо за формулою 3:
.
Неоднорідні диференціальні рівняння із сталими коефіцієнтами. Рівняння із спеціальною правою частиною.
Розглянемо неоднорідне диференціальне рівняння