Реферат: Лінійні різницеві рівняння із сталими коефіцієнтами Задача Коші

де - задані дійсні числа, - задана функція неперервна на деякому проміжку .

Загальний розв’язок такого рівняння являє собою суму частинного

розв’язку рівняння 4 і загального розв’язку відповідного однорідного рівняння. Розглянемо питання про знаходження частинного розв’язку неоднорідного рівняння.

Насамперед слід зазначити , що частинний розв’язок диференціального неоднорідного рівняння 4 можна знайти в квадратурах методом варіації довільних сталих. Проте для рівнянь із спеціальною правою частиною розв’язок можна знайти значно простіше, не вдаючись до операції інтегрування.

Розглянемо деякі з таких рівнянь.

І. Нехай права частина в рівнянні 4 має вигляд

, 5

де - дійсне число, - многочлен степеня .

Можливі такі випадки:

а) число не є коренем характеристичного рівняння

6 Тоді диференціальне рівняння 4 має частинний розв’язок виду

, 7 де - невизначені коефіцієнти.

Справді, підставляючи функцію 7 в рівняння 4, після скорочення на дістанемо

8 де - многочлен степеня - многочлен степеня і - многочлени степеня .Таким чином зліва і справа в тотожності 8 стоять многочлени степеня .Прирівнюючи коефіцієнти при однакових степенях , дістанемо систему лінійних алгебраїчних рівнянь, з якої визначимо невідомих коефіцієнтів многочлена .

Не зупиняючись далі на доведеннях, вкажемо форму, в якій потрібно шукати частинний розв’язок рівняння 4 , залежно від виду правої частини цього рівняння;

б) якщо число збігається з одним коренем характеристичного рівняння 6, тобто є простим коренем цього рівняння, то частинний розв’язок рівняння 4 треба шукати у вигляді

; 9

в) якщо число є двократним коренем рівняння 6 , то частинний розв’язок рівняння 4 шукають у вигляді

.

Об’єднаємо випадки а)-в): якщо права частина рівняння 4 має вигляд 5, то частинний розв’язок цього рівняння треба шукати у вигляді

,

де- многочлен з невизначеними коефіцієнтами того самого степеня, що й многочлен ,а - число коренів характеристичного рівняння, які дорівнюють . Якщо не є коренем характеристичного рівняння, то приймаємо .

ІІ. Нехай права частина в рівнянні 4 має вигляд

, 9.1

де - многочлен степеня , - многочлен степеня; -дійсні числа.

Частинний розв’язок рівняння 4 треба шукати у вигляді

, 9.2

де многочленистепеня з невизначеними коефіцієнтами; - найвищий степінь многочленів тобто - число коренів характеристичного рівняння, які дорівнюють .

Зокрема, якщо права частина рівняння 4 має вигляд

,

де- відомі дійсні числа, то частинний розв’язок цього рівняння треба шукати у вигляді

,

де - невідомі коефіцієнти; - число коренів характеристичного рівняння 6 , які дорівнюють .

К-во Просмотров: 190
Бесплатно скачать Реферат: Лінійні різницеві рівняння із сталими коефіцієнтами Задача Коші