Реферат: Магнитные свойства атомов

ΔΕlS ~ 1/n3 .

Существование механического (спина) и магнитного моментов у электрона и объяснение их свойств вытекает из релятивистской квантовой механики, из основного ее уравнения – уравнения Дирака. В частности, из релятивистской квантовой механики следуют соотношения (15), (16), (17), справедливость которых, как и существование спина, подтверждается экспериментами.

В экспериментах обычно подтверждается не сам магнитный момент микросистемы, а его проекция. Согласно (17), сколько ms = 1/2, проекция собственного магнитного момента электрона по абсолютной величине равна одному магнетону Бора

s H = 2 m0 ms = 0.

Часто под собственным магнитным моментом электрона подразумевают не его значение (15), а значение его проекции (17) и говорят, что электрон обладает магнитным моментом, равным по абсолютной величине одному магнетону Бора.

§3. Полный магнитный момент одноэлектронного атома

До сих пор мы рассматривали поведение орбитального l и спинового S магнитных моментов электрона во внешнем магнитном поле в предположении отсутствия взаимодействия между ними. Однако, в отсутствии внешнего магнитного поля между этими моментами существует взаимодействие, в результате которого имеют место взаимодействия между орбитальным l и спиновым s моментами количества движения электрона (ls - взаимодействие). При этом векторы l и s прецессируют относительно вектора полного момента количества движения J численно равного

|J | = (h / 2π) , (19)

где внутренне квантовое число j принимает одно из значений j = l+s; l+s-1;… …(l-s).

|l | = (h / 2π) =l* ,

|s | = (h / 2π) =S* ,

|J | = (h / 2π) =j* .

Схема суммирование векторов l и s .

Причем проекция полного момента количества движенияJ , на какое-либо направление равна JZ = (h / 2π) mj, где mj = j; j-1; ……, -j, т.е. mJ принимает 2j+1 значений. Т.к. у электрона помимо моментов l и s есть еше магнитные моменты: орбитальный l и собственный S , направленный противоположно соответствующим моментам количества движения, то рис.2 необходимо дополнить векторами l и S (см. рис. 3). При этом необходимо учесть, что отношение μS / PS вдвое больше отношения μ1 / P1 . Поэтому, если на рис. 3 вектор l изобразить равным по длине вектору l , то в том же масштабе длина вектора μS должна быть в два раза больше длины вектора s , рис.3 выполнен с учетом этого обстоятельства. Из рис. видно, что вследствие того что, μS / PS μ1 / P1 направление вектора результирующего магнитного момента ( = μS1 – полного магнитного момента атома) не совпадает с направлением вектора полного магнитного момента количества движения J . Векторы l и s прецессируют вокруг направления того же вектора.

Схема суммирование векторов l и S.

Усредненное значение перпендикулярных составляющих обоих магнитных моментов за прецессии будет равно нулю, т.к. эти составляющие непрерывно меняют свое направление в пространстве.

Т.о., эффективный полный магнитный момент одноэлектродного атома будет равняться сумме параллельных составляющих векторов l и S , т.е. будет равен вектору J . Следовательно, полный магнитный момент атома (в отсутствии внешнего магнитного поля) равен (см. рис. 3).

J = μ1 Cos (l J ) + μS Cos (S J ) (21)

| l | = (h / 2π) l* ; |l | = 0 l* ;

| J | = (h / 2π) j* ; |S | = 0 S* ;

| S | = (h / 2π) S* ;

На рисунке 3, на основании известной тригонометрической формулы, следует, что

Cos (l J ) = (l (l +1) + j (j +1) – s (s + 1)) / 2

Cos (S J ) = (s (s +1) + j (j +1) – l (l + 1)) / 2 (22)

Подставляя (8), (15), (22) в (21), получим

μJ = μ0 (3 j (j + 1) + s (s +1) – l (l + 1)) / (2) (23)

Умножая числитель и знаменатель на , приводим выражение (23) к виду

μJ = μ0 {1 + (j (j + 1) + s (s + 1) - l (l + 1)) / 2j (j + 1)} (24)

Величина g = 1 + (j (j + 1) + s (s + 1) - l (l + 1)) / 2j (j + 1) (25)

Называется множителем (фактором) Ланде, во многих явлениях играет важную роль.

К-во Просмотров: 441
Бесплатно скачать Реферат: Магнитные свойства атомов