Реферат: Математическая статистика

Задача № 1.33

Вычислить центральный момент третьего порядка (m3 ) по данным таблицы:

Производитель­ность труда, м/час 80.5 – 81.5 81.5 – 82.5 82.5 – 83.5 83.5 – 84.5 84.5 – 85.5
Число рабочих 7 13 15 11 4
Производитель­ность труда, м/час XI Число рабочих, mi mi xi (xi -xср )3 (xi -xср )3 mi
80.5 – 81.5 81 7 567 -6,2295 -43,6065
81.5 – 82.5 82 13 1066 -0,5927 -7,70515
82.5 – 83.5 83 15 1245 0,004096 0,06144
83.5 – 84.5 84 11 924 1,560896 17,16986
84.5 – 85.5 85 4 340 10,0777 40,31078

Итого:
50 4142 6,2304


Ответ: m3 =0,1246

Задача № 2.45

Во время контрольного взвешивания пачек чая установлено, средний вес у n =200 пачек чая равен =26 гр. А S= 1гр. В предложение о нормальном распределение определить у какого количества пачек чая ве будет находится в пределах от ( до .

Р(25<x<27)=P=2Ф(1)-1=0,3634

m=n*p=200*0,3634 » 73

Ответ: n=73

Задача № 3.17

На контрольных испытаниях n=17 было определено =3000 ч . Считая, что срок службы ламп распределен нормально с =21 ч.., определить ширину доверительного интервала для генеральной средней с надежностью =0,98

Ответ: [2988<<3012]

Задача № 3.69

По данным контрольных испытания n =9 ламп были получены оценки =360 и S= 26 ч. Считая, что сроки служб ламп распределены нормально определить нижнюю границу доверительного интервала для генеральной средней с надежностью

Ответ:358

Задача № 3.71

По результатам n=7 измерений средняя высота сальниковой камеры равна =40 мм, а S=1,8 мм. В предложение о нормальном распределение определить вероятность того, что генеральная средняя будет внутри интервала .

Ответ: P=0,516

Задача № 3.120


По результатам измерений длины n=76 плунжеров было получено =50 мм и S= 7 мм. Определить с надежностью 0,85 верхнюю границу для генеральной средней.

Ответ:50,2

Задача № 3.144

На основание выборочных наблюдений за производительностью труда n =37 рабочих было вычислено =400 метров ткани в час S= 12 м / ч. в предложение о нормальном распределение найти вероятность того, что средне квадратическое отклонение будет находится в интервале от 11 до 13.

Ответ: P(11<s<13)=0,8836

Задача № 4.6

С помощью критерия Пирсона на уровне значимости a=0,02 проверить гипотезу о биноминальном законе распределения на основание следующих данных.

Mi 85 120 25 10
Mt i 117 85 37 9
mi mi T (mi -mi T )2 (mi -mi T )2 / mi T
85 117 1024 8,752137
120 85 1225 14,41176
25 37 144 3,891892
10 9 1 0,111111
27,1669

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 388
Бесплатно скачать Реферат: Математическая статистика