Реферат: Математическая статистика

Вывод : при данном уровне значимости гипотеза не отвергается.

Задача 4.118

Из n1 = 200 задач первого типа, предложенных для решения, студенты решили m1 = 152, а из n2 = 250 задач второго типа студенты решили m2 = 170 задач. Проверить на уровне значимости a = 0.05 гипотезу о том, что вероятность решения задачи не зависит от того, к какому типу она относится, т.е. H0 : P1 = P2 . В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики.

Вывод: нулевая гипотеза при данном уровне значимости принимается ().

Задача 1.39:

Вычислить центральный момент третьего порядка (m3 * ) по данным таблицы:

Урожайность (ц/га), Х 34,5-35,5 34,5-36,5 36,5-37,5 37,5-38,5 38,5-39,5
Число колхозов, mi 4 11 20 11 4

Решение:

Урожайность (ц/га), Х Число колхозов, mi Xi mi xi (xi -x ср )3 (xi -x ср )3 mi
34,5-35,5 4 35 140 -8 -32
34,5-36,5 11 36 396 -1 -11
36,5-37,5 20 37 740 0 0
37,5-38,5 11 38 418 1 11
38,5-39,5 4 39 156 8 32
Итого: 50 - 1850 - 0


Ответ: m3 * =0

Задача 2.34:

В результате анализа технологического процесса получен вариационный ряд:

Число дефектных изделий 0 1 2 3 4
Число партий 79 55 22 11 3

Предполагая, что число дефектных изделий в партии распределено по закону Пуассона, определить вероятность появления 3 дефектных изделий.

Решение:

m 0 1 2 3 4
p 0.4647 0.3235 0.1294 0.0647 0.0176


Ответ: P=7.79*10-7

Зпадача 3.28:

В предложении о нормальной генеральной совокупности с s=5 сек., определить минимальный объем испытаний, которые нужно провести, чтобы с надежностью g=0.96 точность оценки генеральной средней m времени обработки зубчатого колеса будет равна d=2 сек.


Решение:

n=(5.1375)3 =26.39?27

Ответ: n=27


Задача 3.48:

На основании измерения n=7 деталей вычислена выборочная средняя и S=8 мк. В предположении, что ошибка изготовления распределена нормально, определить с надежностью g=0.98 точность оценки генеральной средней.

Решение:


St(t,n=n-1)=g=St(t,6)=0.98

Ответ: d=0.4278

Задача 3.82:

На основании n=4 измерений температуры одним прибором определена S=9°С. Предположив, что погрешность измерения есть нормальная случайная величина определить с надежностью g=0.9 нижнюю границу доверительного интервала для дисперсии.

Решение:


Ответ: 41.4587

Задача 3.103:

Из 400 клубней картофеля, поступившего на контроль вес 100 клубней превысили 50 г. Определить с надежностью g=0.98 верхнюю границу доверительного интервала для вероятности того, что вес клубня превысит 50 г.

Решение:

К-во Просмотров: 392
Бесплатно скачать Реферат: Математическая статистика