Реферат: Механические колебания
Следовательно, движение системы, находящейся под действием силы вида f = - kx, представляет собой гармоническое колебание.
.
Для пружинного маятника получаем:
.
Круговая частота связана с обычной n соотношением: .
Энергия при гармоническом колебании
Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:
, (4)
где k = m w0 2 .
Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):
EП .(5)
Складывая (4) и (5), с учетом соотношения , получим:
E = EK + EП =. (6)
Таким образом, полная энергия гармонического колебания остается постоянной в отсутствие сил трения, во время колебательного процесса кинетическая энергия переходит в потенциальную и наоборот.
Затухающие колебания
Колебания, происходящие в системе при отсутствии внешних сил (но при наличии потерь на трение или излучение), называются свободными. Частота свободных колебаний зависит от свойств системы и интенсивности потерь.
Наличие трения приводит к затухающим колебаниям. Колебания с убывающей амплитудой называются затухающими.
Допустим, что на систему, кроме квазиупругой силы, действуют силы сопротивления среды (трения), тогда второй закон Ньютона имеет вид:
. (7)
Ограничимся рассмотрением малых колебаний, тогда и скорость системы будет малой, а при небольших скоростях сила сопротивления пропорциональна величине скорости:
, (8)
где r - коэффициент сопротивления среды. Знак " - " обусловлен тем, что Fтр и V имеют противоположные направления.
Подставим (8) в (7). Тогда
или
Обозначим
,