Реферат: Механические колебания

(9)

Решение этого уравнения существенно зависит от знака разности: w2 = w0 2 -b2 , где w — круговая частота затухающих колебаний. При условии w0 2 -b2 > 0, w является действительной величиной и решение (3) будет следующим:

(10)

График этой функции дан на рисунке.

Рис. 2. Затухающие колебания.

Пунктиром изображено изменение амплитуды: A = ±A0 e- b t .

Период затухающих колебаний зависит от коэффициента трения и равен:

(11)

При незначительном сопротивлении среды (b2 <<w2) период практически равен . С ростом коэффициента затухания период колебаний увеличивается.

Из формулы, выражающей закон убывания амплитуды колебаний, можно убедиться, что отношение амплитуд, отделенных друг от друга интервалом в один период (Т), остается постоянным в течение всего процесса затухания. Действительно, амплитуды колебаний, отделенные интервалом в один период, выражаются так:

.

Отношение этих амплитуд равно:

. (12)

Это отношение называют декрементом затухания .

В качестве меры затухания часто берут величину натурального логарифма



этого отношения:

Эта величина носит название логарифмического декремента затухания за период.

При сильном затухании b 2 > w02 из формулы (11) следует, что период колебания является мнимой величиной. Движение при этом носит апериодический (непериодический) характер - выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий.

Вынужденные колебания. Резонанс

Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы (вынуждающей силы). Пусть вынуждающая сила изменяется со временем по гармоническому закону: f = F0 cosW t , где F0 - амплитуда, W - круговая частота вынуждающей силы.

При составлении уравнения движения нужно учесть, кроме вынуждающей силы, также те силы, которые действуют в системе при свободных колебаниях, то есть квазиупругую силу и силу сопротивления среды. Тогда уравнение движения (второй закон Ньютона) запишется следующим образом:

.

Разделив это уравнение на m и перенеся члены с dx и d2 x в левую часть получим неоднородное линейное дифференциальное уравнение второго порядка:


где — коэффициент затухания, — собственная частота колебаний системы. Решением этого уравнения будет:


(13)

К-во Просмотров: 691
Бесплатно скачать Реферат: Механические колебания