Реферат: Механические колебания
(9)
Решение этого уравнения существенно зависит от знака разности: w2 = w0 2 -b2 , где w — круговая частота затухающих колебаний. При условии w0 2 -b2 > 0, w является действительной величиной и решение (3) будет следующим:
(10)
График этой функции дан на рисунке.
Рис. 2. Затухающие колебания.
Пунктиром изображено изменение амплитуды: A = ±A0 e- b t .
Период затухающих колебаний зависит от коэффициента трения и равен:
(11)
При незначительном сопротивлении среды (b2 <<w2) период практически равен . С ростом коэффициента затухания период колебаний увеличивается.
Из формулы, выражающей закон убывания амплитуды колебаний, можно убедиться, что отношение амплитуд, отделенных друг от друга интервалом в один период (Т), остается постоянным в течение всего процесса затухания. Действительно, амплитуды колебаний, отделенные интервалом в один период, выражаются так:
.
Отношение этих амплитуд равно:
. (12)
Это отношение называют декрементом затухания .
В качестве меры затухания часто берут величину натурального логарифма
этого отношения:
Эта величина носит название логарифмического декремента затухания за период.
При сильном затухании b 2 > w02 из формулы (11) следует, что период колебания является мнимой величиной. Движение при этом носит апериодический (непериодический) характер - выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий.
Вынужденные колебания. Резонанс
Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы (вынуждающей силы). Пусть вынуждающая сила изменяется со временем по гармоническому закону: f = F0 cosW t , где F0 - амплитуда, W - круговая частота вынуждающей силы.
При составлении уравнения движения нужно учесть, кроме вынуждающей силы, также те силы, которые действуют в системе при свободных колебаниях, то есть квазиупругую силу и силу сопротивления среды. Тогда уравнение движения (второй закон Ньютона) запишется следующим образом:
.
Разделив это уравнение на m и перенеся члены с dx и d2 x в левую часть получим неоднородное линейное дифференциальное уравнение второго порядка:
где — коэффициент затухания, — собственная частота колебаний системы. Решением этого уравнения будет:
(13)